3RD EDITION

HOW

LINUX

WO RKS

WHAT EVERY SUPERUSER SHOULD KNOW

BRIAN WARD

no starch
press

REVIEWS FOR
HOW LINUX WORKS

“If you are interested in Linux, How Linux Works: What Every Superuser Should
Knowis a mustread title.”

—LINUXINSIDER

“Lots to offer on almost every aspect of the Linux architecture.”

—EVERYDAY LINUX USER

“You’ll get an essential understanding of what’s going on under the hood with-
out getting bogged down in minutiae—making this a very refreshing (and
wholly recommended) addition to the Linux literature.”

—PHIL BULL, CO-AUTHOR OF UBUNTU
MADE EASY AND MEMBER OF THE
UBUNTU DOCUMENTATION TEAM

“Dives straight into the transparent depths of Linux-based operating systems
and shows us how all the pieces fit together.”

—Di1sTROWATCH

“Earns its place on the shelf as an essential reference.”

—THE MAGPI MAGAZINE

HOW LINUX
WORKS
3rd Edition

What Every Superuaer
Should Know

by Brian Ward

¢

no starch
press

San Francisco

HOW LINUX WORKS, 3RD EDITION. Copyright © 2021 by Brian Ward.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0040-2 (print)
ISBN-13: 978-1-7185-0041-9 (ebook)

Publisher: William Pollock

Executive Editor: Barbara Yien

Production Editor: Rachel Monaghan

Developmental Editors: Larry Wake and Jill Franklin

Cover and Interior Design: Octopod Studios

Technical Reviewers: Jordi Gutiérrez Hermoso and Petros Koutoupis
Copyeditor: Rachel Monaghan

Compositor: Cody Gates, Happenstance Type-O-Rama

Proofreader: James M. Fraleigh

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 1-415-863-9900; info@nostarch.com

www.nostarch.com
The Library of Congress has catalogued the first edition as follows:

Ward, Brian.
How Linux works : what every superuser should know / Brian Ward.
p. cm.
Includes index.
ISBN 1-59327-035-6
1. Linux. 2. Operating systems (Computers). I. Title.
QA76.76.063 W3654 2004
005.4’32--dc22
2004002692

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

About the Author

Brian Ward has been working with Linux since 1993. He is also the
author of The Linux Kernel HOWTO, The Book of VMware (No Starch
Press), and The Linux Problem Solver (No Starch Press).

About the Technical Reviewers

Jordi Gutiérrez Hermoso is a GNU/Linux user and developer with
almost two decades of experience, with occasional contributions in vari-
ous circles of the free software communities, such as GNU Octave and
Mercurial. His professional work has allowed him to collaborate with
and learn about diverse topics such as digital cryptographic signatures,
medical imaging, and most recently greenhouse gas accounting and
ecological map data, all built entirely with Linux and other free soft-
ware. When he is not near a computer he enjoys swimming, mathematics,
and knitting.

Petros Koutoupis is currently a senior performance software engineer
at HPE (formerly Cray Inc.) for its Lustre High Performance File System
division. He is also the creator and maintainer of the RapidDisk Project
(www.rapiddisk.org). Petros has worked in the data storage industry
for well over a decade and has helped pioneer the many technologies
unleashed in the wild today.

BRIEF CONTENTS

Prefaceo xxi
Chapter1: The Big Picture 1
Chapter 2: Basic Commands and Directory Hierarchy 11
Chapter 3: Devicesottt 47
Chapter 4: Disks and Filesystems 69
Chapter 5: How the Linux Kernel Boots. i, 117
Chapter 6: How User Space Starts. 137
Chapter 7: System Configuration: Logging, System Time, Batch Jobs, and Users 167
Chapter 8: A Closer Look at Processes and Resource Utilization 199
Chapter 9: Understanding Your Network and Its Configuration 223
Chapter 10: Network Applications and Services 269
Chapter 11: Introduction to Shell Scripts 291
Chapter 12: Network File Transfer and Sharing. 315
Chapter 13: User Environmentsot 335
Chapter 14: A Brief Survey of the Linux Desktop and Printing 347
Chapter 15: Development Tools. 363
Chapter 16: Introduction to Compiling Software from C Source Code 385
Chapter 17: Virtualization. 401
Bibliographyo 419

CONTENTS IN DETAIL

PREFACE XXI
Who Should Read This Book® xxi
Prerequisites XXii
How to Read This Book. xxii
AHands-on Approach xxii
How This Book Is Organized. xxiii
What's New in the Third Edition2. xxiii
A Note on Terminology. XXiv
1
THE BIG PICTURE 1
1.1 Levels and Layers of Abstraction in a Linux System. 2
1.2 Hardware: Understanding Main Memory oo 4
1.3 TheKernel 4
1.3.1 Process Management. 5
1.3.2 Memory Management 6
1.3.3 Device Drivers and Management. 6
1.3.4 System Calls and Support. 7
T.4 User Space.o 8
1.5 Users . oo 9
1.6 Looking Forward 10
2
BASIC COMMANDS AND DIRECTORY HIERARCHY 11
2.1 The Bourne Shell: /bin/sh 12
2.2 Usingthe Shell 12
2.2.1 TheShell Window 13
222 Cab. . 13
2.2.3 Standard Input and Standard Output 14
2.3 BasicCommands. 15
2.3.1 s 15
2.3.2 P 15
2.3.8 MV . 16
2.3.4 touch 16
2.3.5 T o 16
2.3.6 echo. ... 16
2.4 Navigating Directories 16
240 od 17
242 mkdir. .. 17
243 rmdir . 17

2.4.4 Shell Globbing (“Wildcards”) 18

2.5 Intermediate Commands. 19

2.5 1 greP. o 19
2.5.2 1ESS L 20
253 pwd. . 20
2.5.4 diff. . 21
255 file. .. . 21
256 findandlocate 21
257 headandtail 21
2.5.8 s0rt L. 22
2.6 Changing Your Password and Shell 22
2.7 DotFiles. 22
2.8 Environment and Shell Variables 22
2.9 TheCommand Path 23
2.10 Special Characters. 24
2.11 Command-line Editing 25
212 TextEditors 25
2.13 GettingOnlineHelp. 26
2.14 Shelllnputand Output 28
2.14.1 Standard Error. 29
2.14.2 Standard Input Redirection 29
2.15 Understanding Error Messages 29
2.15.1 Anatomy of a Unix Error Message 30
2.15.2 CommonErrors. 30
2.16 listing and Manipulating Processes 32
2.16.1 Command Optons. oot 32
2.16.2 Process Terminationt 33
2.16.3 JobContfrol. ... 34
2.16.4 Background Processes 34
2.17 File Modes and Permissionst 35
2.17.1 Moadifying Permissions 36
2.17.2 Working with Symbolic Links. 38
2.18 Archiving and Compressing Files. 39
2081 gZiP. ot 39
20182 HAr . 39
2.18.3 Compressed Archives (far.gz). 40
2084 zcat. .o 41
2.18.5 Other Compression Utilities. 41
2.19 Linux Directory Hierarchy Essentials 42
2.19.1 Other Root Subdirectories. 43
2.19.2 The /usrDirectoryot 44
2.19.3 Kemellocation 44
2.20 Running Commands as the Superuser. 44
2.20.1 sUdO. L 45
2.20.2 Jetc/sudoers. . . . 45
2.20.3 sudologs 46
2.21 looking Forward 46
3
DEVICES 47
3.1 DeviceFiles.o 48
3.2 ThesysfsDevicePath 49

X Contents in Detail

3.3 ddandDevices. 50

3.4 Device Name Summary 51
3.4.1 Hard Disks: /dev/sd* 52
3.4.2 Virtual Disks: /dev/xvd*, /dev/vd* 53
3.4.3 Non-Volatile Memory Devices: /dev/nvme* 53
3.4.4 Device Mapper: /dev/dm-*, /dev/mapper/* 53
3.4.5 CD and DVD Drives: /dev/sr* 53
3.4.6 PATA Hard Disks: /dev/hd* 53
3.4.7 Terminals: /dev/ty*, /dev/pts/*, and /dev/tty 53
3.4.8 Serial Ports: /dev/ttyS*, /dev/ttyUSB*, /dev/tyACM*. 55
3.4.9 Paradllel Ports: /dev/IpO and /dev/Ip1. 55
3.4.10 Audio Devices: /dev/snd/*, /dev/dsp, /dev/audio, and More. . .. 55
3.4.11 Device File Creation. 56
3.5 udev. . 56
351 devimpfs. ... 57
3.5.2 udevd Operation and Configuration 58
353 wudevadm ... 60
3.5.4 Device Monitoringo 61
3.6 In-Depth: SCSl and the LinuxKernel 62
3.6.1 USBStorageand SCSI. 65
3.6.2 SCSland ATA 65
3.6.3 Generic SCSIDevices. 66
3.6.4 Multiple Access Methods for a Single Device. 67
4
DISKS AND FILESYSTEMS 69
4.1 Partitioning Disk Devices.ot 72
4.1.1 Viewing a PartitionTable 72
4.1.2 Modifying Partition Tables. 75
4.1.3 Creating a PartitionTable 76
4.1.4 Navigating Disk and Partition Geometry. 78
4.1.5 Reading from Solid-State Disks 80
4.2 Filesystems 80
4.2.1 Filesystem Types. . ..o oottt 81
4.2.2 CredtingaFilesystem....... 82
4.2.3 MountingaFilesystem 83
4.2.4 Filesystem UUID. 85
4.2.5 Disk Buffering, Caching, and Filesystems 86
4.2.6 Filesystem Mount Optionsot 86
4.2.7 RemountingaFilesystem. 87
4.2.8 The /etc/fstab Filesystem Table 88
4.2.9 Alternatives to Jetc/fstab 89
4.2.10 Filesystem Capacityo 89
4.2.11 Checking and Repairing Filesystems. 91
4.2.12 Special-Purpose Filesystems. 93
4.3 SWOP SPOCE . . o o 94
4.3.1 Using a Disk Partition as Swap Space 94
4.3.2 UsingaFileasSwapSpace 95
4.3.3 Determining How Much Swap YouNeed 95
4.4 The Logical Volume Manager i 96
4.42 Workingwith IVMo o 97
4.4.3 The lVM Implementation. 107

Contents in Detail

xi

4.5 Looking Forward: Disks and User Space. 11

4.6 |Inside a Traditional Filesystem 11
4.6.1 Inode Details and the Link Count 113
4.6.2 Block Allocation. 114
4.6.3 Working with Filesystems in User Space 115
5
HOW THE LINUX KERNEL BOOTS 117
5.1 Startup Messages 118
5.2 Kernel Initialization and Boot Options 119
5.3 Kernel Parameters 120
54 Bootloaders. 121
54.1 BootloaderTasks 122
5.4.2 Boot loader Overview 123
5.5 GRUB Introduction oot 123
5.5.1 Exploring Devices and Partitions with the GRUB Command Line 125
5.5.2 GRUB Configuration. 127
5.5.3 GRUB Installation. 130
5.6 UEFI Secure Boot Problems 131
5.7 Chainloading Other Operating Systems 132
5.8 Bootloader Details 132
58.17 MBRBoOOI. ... 133
582 UEFIBoof 133
583 How GRUBWorks 134
6
HOW USER SPACE STARTS 137
6.1 Infroduction to init .. oot 138
6.2 lIdentifying Yourinit 139
6.3 systemd ... 139
6.3.1 Unitsand UnitTypes. i 140
6.3.2 Booting and Unit Dependency Graphs 140
6.3.3 systemd Configuration 141
6.3.4 systemd Operation. 144
6.3.5 systemd Process Tracking and Synchronization 147
6.3.6 systemd Dependencies 148
6.3.7 systemd On-Demand and Resource-Parallelized Startup 151
6.3.8 systemd Auxiliary Components L 156
6.4 SystemVRunlevels. 156
6.5 SystemVinit. 157
6.5.1 System V init: Startup Command Sequence. 158
6.5.2 The System VinitLink Farm. L. 159
6.5.3 rUN-Parts. ... 160
6.5.4 SystemVinitControl 161
6.5.5 systemd System V Compatibility. 161
6.6 Shutting Down Your System. 162
6.7 The Initial RAM Filesystem. 163
6.8 Emergency Booting and SinglelUser Mode 164
6.9 Llooking Forward 165

xii Contents in Detail

7

SYSTEM CONFIGURATION:

LOGGING, SYSTEM TIME, BATCH JOBS, AND USERS 167
7.1 Systemloggingo 168
7.1.1 Checking Yourlog Setup 169
7.1.2 Searching and Monitoring logs. 169
7.1.3 logdfile Rotation 172
7.1.4 Journal Maintenance 173
7.1.5 A Closer Look at System Logging. 173
7.2 The Structure of /etc. . . . 176
7.3 UserManagementFiles 177
7.3.1 The Jetc/passwd File., 177
7.3.2 Special Users 178
7.3.3 The /etc/shadow File. 179
7.3.4 Manipulating Users and Passwords 179
7.3.5 Workingwith Groups. 180
74 gettyandlogin 181
7.5 SeftingtheTime. 181
7.5.1 Kernel Time Representation and Time Zones 182
7.52 NetworkTime 182
7.6 Scheduling Recurring Tasks with cron and Timer Units 183
7.6.1 Installing Crontab Files. 184
7.6.2 SystemCrontab Files, 185
7.63 TimerUnits 185
7.64 cronvs. TimerUnits 187
7.7 Scheduling One-Time Tasks withat. 187
7.7.1 Timer UnitEquivalents 188
7.8 Timer Units Running as Regular Users. 188
7.9 User AcCess TOPICS. . v v v v v v e e e 189
7.9.1 User IDs and User Switching 189
7.9.2 Process Ownership, Effective UID, Real UID, and Saved UD. 189
7.9.3 User Identification, Authentication, and Authorization. 191
7.9.4 Using Libraries for User Information 192
7.10 Pluggable Authentication Modules 192
7.10.1 PAM Configuration 193
7.10.2 Tips on PAM Configuration Syntax. 196
7.10.3 PAMandPasswords. 197
701 looking Forward 198
8
A CLOSER LOOK AT PROCESSES AND RESOURCE UTILIZATION 199
8.1 Tracking Processes.t 200
8.2 Finding Open Files with Isof 200
8.2.1 Readingthelsof Output 201
8.2.2 Usinglsof 202
8.3 Tracing Program Execution and System Calls. 202
8.3.1 strace. 202
8.3.2 Irace . ..o 204
8.4 Threads i 204
8.4.1 Single-Threaded and Multithreaded Processes 204
8.4.2 ViewingThreads i 205

Contents in Detail

xiii

8.5 Introduction to Resource Monitoring 206

8.5.1 MeasuringCPUTime 207

8.5.2 Adjusting Process Priorities 207

8.5.3 Measuring CPU Performance with Load Averages 208

8.5.4 Monitoring Memory Status 210

8.5.5 Monitoring CPU and Memory Performance with vmstat 212

8.5.6 I/OMonitoring 214

8.5.7 PerProcess Monitoring with pidstat 216

8.6 Control Groups (Cgroups)ot vt 216

8.6.1 Differentiating Between cgroup Versions 217

8.6.2 Viewing cgroups 219

8.6.3 Manipulating and Creating cgroups. o 220

8.6.4 Viewing Resource Utilization. 221

8.7 FurtherTopicsot 221
9

UNDERSTANDING YOUR NETWORK AND ITS CONFIGURATION 223

9.1 Network Basics oot 224

9.2 Packefs. . ..o 224

9.3 Networklayers. 225

9.4 Thelnternetlayer. 226

9.4.1 Viewing IPAddresses. 228

9.4.2 Subnets 228

9.4.3 Common Subnet Masks and CIDR Notation 229

9.5 Routes and the Kernel Routing Table. 230

9.6 TheDefault Gateway 231

9.7 IPvé Addresses and Networkso 231

9.7.1 Viewing IPv6 Configuration on Your System 232

9.7.2 Configuring Dual-Stack Networks. 233

9.8 Basic ICMPand DNS Tools. 234

0.8 1 PING. o 234

9.8.2 DNSandhost. 235

9.9 The Physical Layer and Ethernet. 235

9.10 Understanding Kernel Network Interfaces 236

9.11 Introduction to Network Interface Configuration. 237

9.11.1 Manually Configuring Interfaces 237

9.11.2 Manually Adding and Deleting Routes 238

9.12 Boot-Activated Network Configuration 239

9.13 Problems with Manual and Boot-Activated Network Configuration. 239

9.14 Network Configuration Managers 240

9.14.1 NetworkManager Operation. 241

9.14.2 NetworkManager Interaction. 241

9.14.3 NetworkManager Configuration 242

9.15 Resolving Hostnames i 243

Q5.1 Jetc/hosts. . o oo 244

9.15.2 resolv.conf 245

9.15.3 Caching and Zero-Configuration DNS 245

9.15.4 /Jetc/nsswitch.conf. 246

Localhost . . oo 247

The Transport Layer: TCP, UDP, and Services. 247

9.17.1 TCP Ports and Connechionsot 248

Q.17.2 UDP. . 250

xiv Contents in Detail

Revisiting a Simple Local Network
Understanding DHCP e
9.19.1 Linux DHCP Clientsot

9.19.2 Linux DHCP Servers

9.20 Automatic IPvé Network Configuration.
9.21 Configuring LinuxasaRouter
9.22 Private Networks (IPv4).
9.23 Network Address Translation (IP Masquerading)
9.24 Routersand Linux.o
9.25 Firewalls.
9.25.1 Linux Firewall Basics.o

9.25.2 Setting FirewallRules

9.25.3 Firewall Strategies

9.26 Ethernet, I, ARP, and NDP
9.27 Wireless Ethernet.
Q271 W

9.27.2 Wireless Security

Q.28 SUMMArY . .

10
NETWORK APPLICATIONS AND SERVICES

10.1 The Basics of Services
10.2 ACloserLook
10.3 Network Servers
10.3.1 Secure Shell
10.3.2 ThesshdServer.
10.3.3 fail2bano

10.4 Presystemd Network Connection Servers: inetd/xinetd
10.5 Diagnostic Tools.o
10.5.1 dsof. ...
10.5.2 tepdump . o oo
10.5.3 nefcat. . .
10.5.4 PortScanningo
10.6 Remote Procedure Calls
10.7 Network Securityo
10.7.1 Typical Vulnerabilities.
10.7.2 SecurityResources oo
10.8 Looking Forward
10.9 Network Sockets
10.10 Unix Domain Sockets

11
INTRODUCTION TO SHELL SCRIPTS

111 Shell Script Basicso
11.1.1 Limitations of Shell Scripts.
11.2 Quotingand literals.
T1.2.1 Literals . .o
11.2.2 SingleQuotes
11.2.3 Double Quotes
11.2.4 Literal Single Quotes

291

291
292
293
293
294
295
295

Contents in Detail

XV

11.3 Special Variables. 296

11.3.1 Individual Arguments: $1, $2, andSo On 296
11.3.2 Number of Arguments: $# 297
11.3.3 AllArguments: $@. 297
11.3.4 ScriptName: $0 297
11.3.5 ProcessID: $$. o 298
11.3.6 ExitCode: $2 298
Exit Codes . ..ot 298
Conditionals o 299
11.5.1 A Workaround for Empty Parameter Lists 299
11.5.2 Other Commands forTests 300
1153 elif. ..o 300
11.5.4 Llogical Constructs 300
11.5.5 Testing Conditions it 301
T1.5.6 case. ..o 304
TT.6 LOOPS . o oo 305
11.6.1 forloops ..o vvi e 305
11.6.2 whileloops. 305
11.7 Command Substitution 306
11.8 Temporary File Management. 307
11.9 Here Documents 308
11.10 Important Shell Script Utilities 308
11.10.1 basename.ot 308
T1.00.2 awk . oo 309
T1.10.3 sed .o 309
TT.T00 4 XArgS « oot e e 310
T1.70.5 eXpr. .o 311
TT.10.6 eXeC. . o 311
T1.11 Subshells ..o 311
11.12 Including Other Files in Scripts. 312
11.13 Reading User Input.o 312
11.14 When (Not) to Use Shell Scripts. i 312
12

NETWORK FILE TRANSFER AND SHARING 315
12,1 QUick Copy oot 316
12,2 ISYNC o oo 317
12.2.1 Getting Started withrsync. L. 317
12.2.2 Making Exact Copies of a Directory Structure 318
12.2.3 Using the Trailing Slash 319
12.2.4 Excluding Files and Directories 320

12.2.5 Checking Transfers, Adding Safeguards,
and Using Verbose Mode 321
12.2.6 CompressingData. 321
12.2.7 Limiting Bandwidth. 322
12.2.8 Transferring Files to Your Computer 322
12.2.9 Furtherrsync Topicso oot 322
12.3 Introduction to File Sharing 323
12.3.1 File Sharing Usage and Performance 323
12.3.2 File Sharing Security 323

Xvi Contents in Detail

12.4 Sharing Fileswith Samba
12.4.1 Server Configuration
12.4.2 Server Access Control
12.4.3 Passwords.ot
12.4.4 Manual Server Startup
12.4.5 Diagnosticsand Logfiles
12.4.6 File Share Configuration.
12.4.7 Home Directories.
12.4.8 Printer Sharing.
12.4.9 The Samba Client
12,5 SSHES o
12.6 NFS . .
12.7 Cloud Storage.o
12.8 The State of Network File Sharing

13
USER ENVIRONMENTS

13.1 Guidelines for Creating Startup Files
13.2 Whento Alter Startup Files
13.3 Shell Startup File Elements.
13.3.1 The Command Path
13.3.2 The Manual Page Path
13.3.3 ThePrompt
13304 AlIGSES . o v vt
13.3.5 The Permissions Mask.
13.4 Startup File Order and Examples.
13.4.1 Thebash Shell.
13.4.2 TheteshShell
13.5 Default User Seftings
13.5.1 ShellDefaults
13.5.2 Edifor.o
13.5.3 Pager. ...
13.6 Startup File Pitfalls
13.7 Further Startup TOpICS . . . o o v oot et e e e

14
A BRIEF SURVEY OF THE LINUX DESKTOP AND PRINTING

14.1 Desktop Componentsttt
1411 Framebuffers.
14.1.2 The XWindow System
14 1.3 Wayland .« ..o
4.1.4 Window Managers
14 1.5 Toolkits . oo
14.1.6 Desktop Environments. i
14.1.7 Applications
14.2 Are You RunningWayland or X2
14.3 ACloserlookatWayland
14.3.1 The Compositing Window Manager
14.3.2 libinput.
14.3.3 X Compatibility in Wayland oo

335

336
336
337
337
338
338
339
339
340
340
342
343
343
344
344
344
345

347

348
348
348
349
349
350
350
350
351
351
351
352
353

Contents in Defail ~ XVii

14.4 A Closer Look at the X Window System 354

14.4.1 Display Managerst 355
14.4.2 Network Transparencyot 355
14.4.3 Woays of Exploring XClients 355
14.4.4 XEvents 356
14.4.5 Xlnput and Preference Settings 357
T4.5 DBuUS . ..o 359
14.5.1 System and Session Instances 360
14.5.2 D-Bus Message Monitoring 360
14.6 Prinfing. . . oo 360
14.6.1 CUPS . .. 361
14.6.2 Format Conversion and PrintFilters 361
14.7 Other Desktop Topics . « . . oottt 362
15
DEVELOPMENT TOOLS 363
15.1 The CCompiler. 364
15.1.1 Compiling Multiple Source Files. 365
15.1.2 Linking with Libraries 366
15.1.3 Working with Shared Libraries. 367
15.1.4 Working with Header (Include) Files and Directories. 371
152 make . .o 373
15.2.1 ASample Makefile 374
15.2.2 BuilkinRules 374
15.2.3 Final ProgramBuild 375
15.2.4 Dependency Updates. 375
15.2.5 Command-line Arguments and Options 376
15.2.6 Standard Macros and Variables 377
15.2.7 Conventional Targets i 378
15.2.8 Makefile Organization. 378
153 Llexand Yacc.o 379
15.4 Scripting Languages. 380
1541 Python 381
15.4.2 Perl ..o 381
15.4.3 Other Scripting Llanguages 381
155 Java. .. 382
15.6 looking Forward: Compiling Packages. 383
16
INTRODUCTION TO COMPILING SOFTWARE
FROM C SOURCE CODE 385
16.1 Software Build Systems. 386
16.2 Unpacking C Source Packages 387
16.3 GNU Autoconf 388
16.3.1 AnAutoconfExample. 389
16.3.2 Installation Using a Packaging Tool 390
16.3.3 configure Script Options. 390
16.3.4 Environment Variables 391
16.3.5 AutoconfTargets 392
16.3.6 Autoconflogfiles. 392
16.3.7 pkgeonfig. 393

xviii Contents in Detail

16.4 Installation Practice
16.4.1 Wheretolnstall

16.5 ApplyingaPatch.

16.6 Troubleshooting Compiles and Installations
16.6.1 SpecificErrors.

16.7 looking Forward

17

VIRTUALIZATION

17.1 Virtual Machines
17. 7.1 Hypervisors. . ..o
17.1.2 Hardware in a Virtual Machine
17.1.3 Common Uses of Virtual Machines.
17.1.4 Drawbacks of Virtual Machines.

17.2 Containerso
17.2.1 Docker, Podman, and Privileges.
17.2.2 ADockerExample.
17.2.3 IXC .
17.2.4 Kubernetes e
17.2.5 Pitfalls of Containers.

17.3 Runtime-Based Virtualization

BIBLIOGRAPHY

INDEX

401

402
402
403
404
404
405
406
407
414
415
415
417

419

423

Contents in Detail

xix

ACKNOWLEDGMENTS

Contributions to this book come from not just those who were involved in
the development process, but also those without whom I wouldn’t know
anything about Linux. These include James Duncan, Douglas N. Arnold,
Bill Fenner, Ken Hornstein, Scott Dickson, Dan Ehrlich, Felix Lee, and
Gregory P. Smith. Previous editions included help from Karol Jurado,
Laurel Chun, Serena Yang, Alison Law, Riley Hoffman, Scott Schwartz,
Dan Sully, Dominique Poulain, Donald Karon, and Gina Steele.

This third edition benefits from the excellent work of Barbara Yien,
Rachel Monaghan, Jill Franklin, Larry Wake, Jordi Gutiérrez Hermoso,
and Petros Koutoupis. As the publisher of No Starch Press, Bill Pollock
has been instrumental in this book since the first edition. And once more,
Hsinju Hsieh has put up with me for another revision.

PREFACE

Your system shouldn’t be a mystery. You should be able to make your soft-
ware do what you want it to do without “magic” incantations or rituals. The
key to attaining this power lies in understanding the fundamentals of what
the software does and how it works, and that’s what this book is all about.
You should never have to fight with a computer.

Linux is a great platform for learning because it doesn’t try to hide
anything from you. In particular, you can find most system configuration
details in easy-to-read plaintext files. The only tricky part is figuring out
which parts are responsible for what and how they all fit together.

Who Should Read This Book?

Your interest in learning how Linux works may have come from any number
of sources. In the professional realm, operations and DevOps folks need to
know nearly everything that you’ll find in this book. Linux software archi-
tects and developers should also know this material in order to make the
best use of the operating system. Researchers and students, often running
their own Linux systems, will also find that this book provides useful expla-
nations for why things are set up the way they are.

Then there are the tinkerers—people who just love to play around with
their computers for fun, profit, or both. Want to know why certain things
work while others don’t? Want to know what happens if you move some-
thing around? You're probably a tinkerer.

xxii

Prerequisites

Although Linux is beloved by programmers, you don’t need to be a pro-
grammer to read this book; you need only basic computer-user knowledge.
That is, you should be able to bumble around a GUI (especially the installer
and settings interface for a Linux distribution) and know what files and
directories (folders) are. You should also be prepared to check additional
documentation on your system and on the web. The most important thing
you need is to be ready and willing to play around with your computer.

How to Read This Book

Building the requisite knowledge is a challenge in tackling any technical
subject. Explaining how software systems work can get really complicated.
Too much detail can bog down readers and make important concepts dif-
ficult to grasp (the human brain just can’t process so many new ideas at
once), but too little detail can leave readers in the dark and unprepared for
later material.

I've designed most chapters to tackle the most important material first:
the basic information that you’ll need in order to progress. In places, I've
simplified things in order to keep focus. As a chapter progresses, you'll see
much more detail, especially in the last few sections. Do you need to know
those bits right away? In most cases, no; I note this where applicable. If your
eyes start to glaze over when you're faced with a lot of extra details about
concepts you just learned, don’t hesitate to skip ahead to the next chapter
or take a break. The nitty-gritty will still be there waiting for you.

A Hands-on Approach

Preface

However you choose to proceed through this book, you should have a Linux
machine in front of you, preferably one that you're confident abusing with
experiments. You might prefer to play around with a virtual installation—I
used VirtualBox to test much of the material in this book. You also should
have superuser (root) access, but try to use a regular user account most of
the time. You’ll mostly work at the command line, in a terminal window or
a remote session. If you haven’t worked much in that environment, no prob-
lem; Chapter 2 will bring you up to speed.

Commands in this book typically look like this:

$1s /

[some output]

Enter the text in bold; the nonbolded text that follows is what the
machine spits back. The $ is the prompt for a regular user account. If you
see a # as a prompt, you need to be superuser. (More on that in Chapter 2.)

How This Book Is Organized

I’'ve grouped the book’s chapters into three basic parts. The first is intro-
ductory, giving a bird’s-eye view of the system and then offering hands-on
experience with some tools you’ll need for as long as you run Linux. Next,
you’ll explore each part of the system in more detail, from device manage-
ment to network configuration, following the general order in which the
system starts. Finally, you’ll get a tour of some pieces of a running system,
learn some essential skills, and get some insight into the tools that program-
mers use.

With the exception of Chapter 2, most of the early chapters heavily
involve the Linux kernel, but you’ll work your way into user space as the
book progresses. (If you don’t know what I'm talking about here, don’t
worry; I’ll explain in Chapter 1.)

The material is meant to be as distribution-agnostic as possible. Having
said this, it can be tedious to cover all variations in systems software, so I've
tried to cover the two major distribution families: Debian (including Ubuntu)
and RHEL/Fedora/CentOS. I've also focused on desktop and server installa-
tions. A significant amount of material carries over into embedded systems,
such as Android and OpenWRT, but it’s up to you to discover the differences
on those platforms.

What’s New in the Third Edition?

The second edition was published during a time of transition for Linux
systems. Several traditional components were in the process of being
replaced, which made handling some subjects tricky, because readers could
encounter a wide variety of configurations. Now, however, those new pieces
(systemd in particular) have near-universal adoption, so I've been able to
streamline a fair amount of the discussion.

I've retained the emphasis on the kernel’s role in a Linux system. This
material has proven popular, and you probably interact with the kernel
more than you realize.

I’'ve added a new chapter introducing virtualization. Although Linux
has always been popular on virtual machines (such as cloud services), that
type of virtualization lies outside the scope of this book, because the way
the system operates on a virtual machine is almost the same as on “bare
metal” hardware. So, the discussion here primarily focuses on decipher-
ing the terminology you’ll encounter. However, containers have gained in
popularity since the second edition was published, and they also fit here,
because they basically consist of a bunch of Linux features like the ones
described throughout the rest of the book. Containers make heavy use of
cgroups, which also get new treatment in this third edition.

Other subjects (not necessarily related to containers) I happily expanded
on are the Logical Volume Manager, the journald logging system, and IPv6
in the networking material.

Preface XX

XXiv

Though I've added a significant amount of content, the book is still a
reasonable size. I want to provide the information you need to get on the
fast track, and that includes explaining certain details along the way that
can be hard to grasp, but I don’t want you to have to become a weightlifter
in order to pick up this book. Once you master the important subjects here,
you should have no trouble seeking out and understanding more details.

The first edition included historical information that I removed later to
improve focus. If you're interested in Linux and how it relates to the history
of Unix, pick up Peter H. Salus’s The Daemon, the Gnu, and the Penguin (Reed
Media Services, 2008). It does a great job of explaining how the software we
use has evolved over time.

A Note on Terminology

Preface

The names of certain operating system elements have caused a fair amount
of debate historically—even the word Linux itself. Should it be “Linux,” or
should it be “GNU/Linux” to reflect that the operating system also contains
pieces from the GNU Project? Throughout this book, I've tried to use the
most common, least awkward names possible.

THE BIG PICTURE

At first glance, a contemporary operating
system such as Linux is very complicated,

with a dizzying number of pieces simultane-

ously running and communicating. For exam-
ple, a web server can talk to a database server, which
could in turn use a shared library that many other pro-
grams use. How does all of this manage to work, and
how can you make sense of any of it?

The most effective way to understand how an operating system works
is through abstraction—a fancy way of saying that you can ignore most of
the details that make up a piece that you're trying to understand, and con-
centrate instead on its basic purpose and operation. For example, when
you ride in a car, you normally don’t need to think about details such as the
mounting bolts that hold the motor inside the car or the people who build
and maintain the road upon which the car drives. All you really need to
know is what the car does (transports you somewhere else) and a few basics
about how to use it (how to operate the door and seat belt).

2

Chapter 1

This level of abstraction might work if you're just a passenger in the car.
But if you also need to drive it, you have to dig deeper and break up your
abstraction into a few parts. You now expand your knowledge in three areas:
the car itself (such as its size and capabilities), how to operate the controls
(steering wheel, accelerator pedal, and so on), and the features of the road.

Abstraction can be a great help when you're trying to find and fix prob-
lems. For example, let’s say you're driving a car and the ride is rough. You
can quickly assess the three basic car-related abstractions just mentioned to
determine the source of the problem. It should be fairly easy to eliminate
the first two abstractions (your car or the way you're driving) if neither is the
issue, so you can narrow the problem down to the road itself. You’ll probably
find that the road is bumpy. Now, if you want, you can dig deeper into your
abstraction of the road and find out why the road has deteriorated or, if the
road is new, why the construction workers did a lousy job.

Software developers use abstraction as a tool when building an oper-
ating system and its applications. There are many terms for an abstracted
subdivision in computer software—including subsystem, module, and package—
but we’ll use the term component in this chapter because it’s simple. When
building a software component, developers typically don’t think much about
the internal structure of other components, but they do consider other
components they can use (so that they don’t have to write any additional
unnecessary software) and how to use them.

This chapter provides a high-level overview of the components that make
up a Linux system. Although each one has a tremendous number of technical
details in its internal makeup, we’re going to ignore these details and concen-
trate on what the components do in relation to the whole system. We’ll look
at the details in subsequent chapters.

Levels and Layers of Abstraction in a Linux System

Using abstraction to split computing systems into components makes things
easier to understand, but it doesn’t work without organization. We arrange
components into layers or levels, classifications (or groupings) of compo-
nents according to where the components sit between the user and the
hardware. Web browsers, games, and such sit at the top layer; at the bottom
layer we have the memory in the computer hardware—the 0Os and 1s. The
operating system occupies many of the layers in between.

A Linux system has three main levels. Figure 1-1 shows these levels
and some of the components inside each level. The hardwareis at the base.
Hardware includes the memory as well as one or more central processing
units (CPUs) to perform computation and to read from and write to memory.
Devices such as disks and network interfaces are also part of the hardware.

The next level up is the kernel, which is the core of the operating system.
The kernel is software residing in memory that tells the CPU where to look
for its next task. Acting as a mediator, the kernel manages the hardware
(especially main memory) and is the primary interface between the hard-
ware and any running program.

Processes—the running programs that the kernel manages—collectively
make up the system’s upper level, called user space. (A more specific term
for process is user process, regardless of whether a user directly interacts with
the process. For example, all web servers run as user processes.)

User Processes

Graphical User Interface Servers Shell
Linux Kernel
System Calls Process Management Memory Management

Device Drivers

Hardware

Processor (CPU) Main Memory (RAM) Disks Network Ports

Figure 1-1: General Linux system organization

There is a critical difference between how the kernel and the user pro-
cesses run: the kernel runs in kernel mode, and the user processes run in
user mode. Code running in kernel mode has unrestricted access to the pro-
cessor and main memory. This is a powerful but dangerous privilege that
allows the kernel to easily corrupt and crash the entire system. The memory
area that only the kernel can access is called kernel space.

User mode, in comparison, restricts access to a (usually quite small) sub-
set of memory and safe CPU operations. User space refers to the parts of main
memory that the user processes can access. If a process makes a mistake and
crashes, the consequences are limited and can be cleaned up by the kernel.
This means that if your web browser crashes, it probably won’t take down the
scientific computation that has been running in the background for days.

In theory, a user process gone haywire can’t cause serious damage to the
rest of the system. In reality, it depends on what you consider “serious dam-
age,” as well as the particular privileges of the process, because some pro-
cesses are allowed to do more than others. For example, can a user process
completely wreck the data on a disk? With the correct permissions, yes—and
you might consider this to be fairly dangerous. There are safeguards to pre-
vent this, however, and most processes simply aren’t allowed to wreak havoc
in this manner.

The Big Picture 3

The Linux kernel can run kernel threads, which look much like processes but have
access to kernel space. Some examples are kthreadd and kblockd.

1.2 Hardware: Understanding Main Memory

Of all of the hardware on a computer system, main memory is perhaps the
most important. In its rawest form, main memory is just a big storage area
for a bunch of Os and 1s. Each slot for a 0 or 1 is called a b:t. This is where the
running kernel and processes reside—they’re just big collections of bits. All
input and output from peripheral devices flows through main memory, also
as a bunch of bits. A CPU is just an operator on memory; it reads its instruc-
tions and data from the memory and writes data back out to the memory.

You'll often hear the term state in reference to memory, processes, the
kernel, and other parts of a computer system. Strictly speaking, a state is a
particular arrangement of bits. For example, if you have four bits in your
memory, 0110, 0001, and 1011 represent three different states.

When you consider that a single process can easily consist of millions
of bits in memory, it’s often easier to use abstract terms when talking about
states. Instead of describing a state using bits, you describe what something
has done or is doing at the moment. For example, you might say, “The pro-
cess is waiting for input” or, “The process is performing Stage 2 of its startup.”

Because it’s common to refer to the state in abstract terms rather than to the actual
bits, the term image refers to a particular physical arrangement of bits.

1.3 The Kernel

Why are we talking about main memory and states? Nearly everything that
the kernel does revolves around main memory. One of the kernel’s tasks is to
split memory into many subdivisions, and it must maintain certain state infor-
mation about those subdivisions at all times. Each process gets its own share
of memory, and the kernel must ensure that each process keeps to its share.
The kernel is in charge of managing tasks in four general system areas:

Processes The kernel is responsible for determining which processes
are allowed to use the CPU.

Memory The kernel needs to keep track of all memory—what is cur-
rently allocated to a particular process, what might be shared between
processes, and what is free.

Device drivers The kernel acts as an interface between hardware
(such as a disk) and processes. It’s usually the kernel’s job to operate
the hardware.

System calls and support Processes normally use system calls to com-
municate with the kernel.

We’ll now briefly explore each of these areas.

4 Chapter 1

If yow’re interested in the detailed workings of a kernel, two good textbooks are
Operating System Concepts, 10th edition, by Abraham Silberschatz, Peter B.
Galvin, and Greg Gagne (Wiley, 2018), and Modern Operating Systems, 4th
edition, by Andrew S. Tanenbaum and Herbert Bos (Prentice Hall, 2014).

1.3.1 Process Management

Process management describes the starting, pausing, resuming, scheduling,
and terminating of processes. The concepts behind starting and terminat-
ing processes are fairly straightforward, but describing how a process uses
the CPU in its normal course of operation is a bit more complex.

On any modern operating system, many processes run “simultane-
ously.” For example, you might have a web browser and a spreadsheet open
on a desktop computer at the same time. However, things are not as they
appear: the processes behind these applications typically do not run at
exactly the same time.

Consider a system with a one-core CPU. Many processes may be able to
use the CPU, but only one process can actually use the CPU at any given
time. In practice, each process uses the CPU for a small fraction of a second,
then pauses; then another process uses the CPU for another small fraction
of a second; then another process takes a turn, and so on. The act of one pro-
cess giving up control of the CPU to another process is called a context switch.

Each piece of time—called a time slice—gives a process enough time for
significant computation (and indeed, a process often finishes its current
task during a single slice). However, because the slices are so small, humans
can’t perceive them, and the system appears to be running multiple pro-
cesses at the same time (a capability known as multitasking).

The kernel is responsible for context switching. To understand how this
works, let’s think about a situation in which a process is running in user
mode but its time slice is up. Here’s what happens:

1. The CPU (the actual hardware) interrupts the current process based on
an internal timer, switches into kernel mode, and hands control back to
the kernel.

2. The kernel records the current state of the CPU and memory, which
will be essential to resuming the process that was just interrupted.

3. The kernel performs any tasks that might have come up during the
preceding time slice (such as collecting data from input and output, or
1/0, operations).

4. The kernel is now ready to let another process run. The kernel analyzes
the list of processes that are ready to run and chooses one.

5. The kernel prepares the memory for this new process and then pre-
pares the CPU.

6. The kernel tells the CPU how long the time slice for the new process
will last.

7. The kernel switches the CPU into user mode and hands control of the
CPU to the process.

The Big Picture 5

6

Chapter 1

The context switch answers the important question of when the kernel
runs. The answer is that it runs between process time slices during a context
switch.

In the case of a multi-CPU system, as most current machines are, things
become slightly more complicated because the kernel doesn’t need to
relinquish control of its current CPU in order to allow a process to run on
a different CPU, and more than one process may run at a time. However,
to maximize the usage of all available CPUs, the kernel typically performs
these steps anyway (and may use certain tricks to grab a little more CPU
time for itself).

1.3.2 Memory Management

The kernel must manage memory during a context switch, which can be a
complex job. The following conditions must hold:

e The kernel must have its own private area in memory that user pro-
cesses can’t access.

e Each user process needs its own section of memory.

e One user process may not access the private memory of another
process.

e User processes can share memory.
e Some memory in user processes can be read-only.

e The system can use more memory than is physically present by using
disk space as auxiliary.

Fortunately for the kernel, there is help. Modern CPUs include a memory
management unit (MMU) that enables a memory access scheme called virtual
memory. When using virtual memory, a process does not directly access the
memory by its physical location in the hardware. Instead, the kernel sets up
each process to act as if it had an entire machine to itself. When the pro-
cess accesses some of its memory, the MMU intercepts the access and uses
a memory address map to translate the memory location from the process
point of view into an actual physical memory location in the machine. The
kernel must still initialize and continuously maintain and alter this mem-
ory address map. For example, during a context switch, the kernel has to
change the map from the outgoing process to the incoming process.

The implementation of a memory address map is called a page table.

You’ll learn more about how to view memory performance in Chapter 8.

1.3.3 Device Drivers and Management

The kernel’s role with devices is relatively simple. A device is typically acces-
sible only in kernel mode because improper access (such as a user process
asking to turn off the power) could crash the machine. A notable difficulty

NOTE

is that different devices rarely have the same programming interface, even
if the devices perform the same task (for example, two different network
cards). Therefore, device drivers have traditionally been part of the kernel,
and they strive to present a uniform interface to user processes in order to
simplify the software developer’s job.

1.3.4 System Calls and Support

There are several other kinds of kernel features available to user processes.
For example, system calls (or syscalls) perform specific tasks that a user process
alone cannot do well or at all. For example, the acts of opening, reading, and
writing files all involve system calls.

Two system calls, fork() and exec(), are important to understanding how
processes start:

fork() When a process calls fork(), the kernel creates a nearly identical
copy of the process.

exec() When a process calls exec(program), the kernel loads and starts
program, replacing the current process.

Other than init (see Chapter 6), all new user processes on a Linux system
start as a result of fork(), and most of the time, you also run exec() to starta
new program instead of running a copy of an existing process. A very simple
example is any program that you run at the command line, such as the 1s
command to show the contents of a directory. When you enter 1s into a
terminal window, the shell that’s running inside the terminal window calls
fork() to create a copy of the shell, and then the new copy of the shell calls
exec(1ls) to run Is. Figure 1-2 shows the flow of processes and system calls for
starting a program like 1s.

shell 1 fork() - shell

copy of shell 1 exec(ls) 1s

Figure 1-2: Starting a new process

System calls are normally denoted with parentheses. In the example shown in
Figure 1-2, the process asking the kernel to create another process must perform a
fork() system call. This notation derives from the way the call would be written in
the C programming language. You don’t need to know C to understand this book;
Just remember that a system call is an interaction between a process and the kernel.
In addition, this book simplifies certain groups of system calls. For example, exec()
refers to an entive family of system calls that all perform a similar task but differ in
programming. There is also a variant on a process called a thread, which we’ll cover
in Chapter 8.

The Big Piclure 7

1.4

Chapter 1

The kernel also supports user processes with features other than
traditional system calls, the most common of which are pseudodevices.
Pseudodevices look like devices to user processes, but they’re imple-
mented purely in software. This means they don’t technically need to
be in the kernel, but they are usually there for practical reasons. For
example, the kernel random number generator device (/dev/random)
would be difficult to implement securely with a user process.

Technically, a user process that accesses a pseudodevice must use a system call to open
the device, so processes can’t entirely avoid system calls.

User Space

As mentioned earlier, the main memory that the kernel allocates for user
processes is called user space. Because a process is simply a state (or image)
in memory, user space also refers to the memory for the entire collection
of running processes. (You may also hear the more informal term userland
used for user space; sometimes this also means the programs running in
user space.)

Most of the real action on a Linux system happens in user space.
Though all processes are essentially equal from the kernel’s point of view,
they perform different tasks for users. There is a rudimentary service level
(or layer) structure to the kinds of system components that user processes
represent. Figure 1-3 shows how an example set of components fit together
and interact on a Linux system. Basic services are at the bottom level
(closest to the kernel), utility services are in the middle, and applications
that users touch are at the top. Figure 1-3 is a greatly simplified diagram
because only six components are shown, but you can see that the compo-
nents at the top are closest to the user (the user interface and web browser);
the components in the middle level include a domain name caching server
that the web browser uses; and there are several smaller components at the
bottom.

User Processes

User Inferface |- »| Web Browser

N

Name Caching Server

Y

Network Configuration Communication Bus Diagnostic Logging

Figure 1-3: Process types and interactions

1.5

NOTE

The bottom level tends to consist of small components that perform sin-
gle, uncomplicated tasks. The middle level has larger components such as
mail, print, and database services. Finally, components at the top level per-
form complicated tasks that the user often controls directly. Components
also use other components. Generally, if one component wants to use
another, the second component is either at the same service level or below.

However, Figure 1-3 is only an approximation of the arrangement of
user space. In reality, there are no rules in user space. For example, most
applications and services write diagnostic messages known as logs. Most pro-
grams use the standard syslog service to write log messages, but some prefer
to do all of the logging themselves.

In addition, it’s difficult to categorize some user-space components.
Server components such as web and database servers can be considered very
high-level applications because their tasks are often complicated, so you
might place these at the top level in Figure 1-3. However, user applications
may depend on these servers to perform tasks that they’d rather not do them-
selves, so you could also make a case for placing them at the middle level.

Users

The Linux kernel supports the traditional concept of a Unix user. A useris
an entity that can run processes and own files. A user is most often associ-
ated with a username; for example, a system could have a user named billyjoe.
However, the kernel does not manage the usernames; instead, it identifies
users by simple numeric identifiers called user IDs. (You’ll learn more about
how usernames correspond to user IDs in Chapter 7.)

Users exist primarily to support permissions and boundaries. Every
user-space process has a user owner, and processes are said to run as the
owner. A user may terminate or modify the behavior of its own processes
(within certain limits), but it cannot interfere with other users’ processes.
In addition, users may own files and choose whether to share them with
other users.

A Linux system normally has a number of users in addition to the ones
that correspond to the real human beings who use the system. You’ll read
about these in more detail in Chapter 3, but the most important user to
know about is ro0t. The root user is an exception to the preceding rules
because root may terminate and alter another user’s processes and access
any file on the local system. For this reason, root is known as the superuser. A
person who can operate as root—that is, who has 700t access—is an adminis-
trator on a traditional Unix system.

Operating as root can be dangerous. It can be difficult to identify and correct mis-
lakes because the system will let you do anything, even if it is harmful to the system.
For this reason, system designers constantly try to make root access as unnecessary as
possible—for example, by not requiring root access to switch between wireless networks
on a notebook. In addition, as powerful as the root user is, it still runs in the operal-
ing system’s user mode, not kernel mode.

The Big Picture 9

10

1.6

Chapter 1

Groups are sets of users. The primary purpose of groups is to allow a
user to share file access to other members of a group.

Looking Forward

So far, you've seen what constitutes a running Linux system. User processes
make up the environment that you directly interact with; the kernel manages
processes and hardware. Both the kernel and processes reside in memory.
This is great background information, but you can’t learn the details
of a Linux system by reading about it alone; you need to get your hands
dirty. The next chapter starts your journey by teaching you some user-space
basics. Along the way, you’ll learn about a major part of the Linux system
that this chapter doesn’t discuss: long-term storage (disks, files, and the
like). After all, you need to store your programs and data somewhere.

BASIC COMMANDS AND
DIRECTORY HIERARCHY

This chapter is a guide to the Unix com-
mands and utilities you’ll encounter
throughout this book. This is preliminary
material, and you may already know a substan-
tial amount of it. Even if you think you’re up to speed,
take a few moments to flip through the chapter just to
make sure, especially when it comes to the directory

hierarchy material in Section 2.19.

Why Unix commands? Isn’t this a book about how Linux works? It is, of
course, but Linux is a Unix flavor at heart. You’ll see the word Unix in this
chapter more than Linux because you can take what you learn straight over
to BSD and other Unix-flavored systems. I've attempted to avoid covering
too many Linux-specific user interface extensions, not only to give you a
better background for using the other operating systems, but also because
these extensions tend to be unstable. You'll be able to adapt to new Linux

12

2.1

2.2

Chapter 2

releases much more quickly if you know the core commands. In addition,
knowing these commands can boost your understanding of the kernel, as
many correspond directly to system calls.

For more details about Unix for beginners than you'll find here, consider reading
The Linux Command Line, 2nd edition (No Starch Press, 2019), UNIX for the
Impatient, 2nd edition (Addison-Wesley Professional, 1995), and Learning the
UNIX Operating System, 5th edition (O’Reilly, 2001).

The Bourne Shell: /bin/sh

The shell is one of the most important parts of a Unix system. A shellis a
program that runs commands, like the ones that users enter into a terminal
window. These commands can be other programs or built-in features of the
shell. The shell also serves as a small programming environment. Unix pro-
grammers often break common tasks into smaller components and use the
shell to manage tasks and piece things together.

Many important parts of the system are actually shell scripts—text files
that contain a sequence of shell commands. If you’ve worked with MS-DOS
previously, you can think of shell scripts as very powerful .BAT files. Because
they’re important, Chapter 11 is devoted entirely to shell scripts.

As you progress through this book and gain practice, you’ll add to your
knowledge of manipulating commands using the shell. One of the best
things about the shell is that if you make a mistake, you can easily see what
you typed to find out what went wrong, and then try again.

There are many different Unix shells, but all derive features from the
Bourne shell (/bin/sh), a standard shell developed at Bell Labs for early
versions of Unix. Every Unix system needs a version of the Bourne shell in
order to function correctly, as you will see throughout this book.

Linux uses an enhanced version of the Bourne shell called bash or
the “Bourne-again” shell. The bash shell is the default shell on most Linux
distributions, and /bin/sh is normally a link to bash on a Linux system. You
should use the bash shell when running the examples in this book.

You may not have bash as your default shell if you’re using this chapter as a guide
for a Unix account at an organization where you’re not the system administrator. You
can change your shell with chsh or ask your system administrator for help.

Using the Shell

When you install Linux, you should create at least one regular user to be
your personal account. For this chapter, you should log in as the regular
user.

NOTE

2.2.1 The Shell Window

After logging in, open a shell window (often referred to as a terminal). The
easiest way to do so from a GUI like Gnome or KDE is to open a terminal
application, which starts a shell inside a new window. Once you’ve opened
a shell, it should display a prompt at the top that usually ends with a dollar
sign ($). On Ubuntu, that prompt should look like name@host :path$, and on
Fedora, it’s [name@host path]$, where name is your username, host is the name
of your machine, and path is your current working directory (see Section
2.4.1). If you're familiar with Windows, the shell window will look something
like a DOS command prompt; in macOS the Terminal application is essen-
tially the same as a Linux shell window.

This book contains many commands that you will type at a shell
prompt. They all begin with a single $ to denote the shell prompt. For exam-
ple, type this command (just the part in bold, not the $) and press ENTER:

$ echo Hello there.

Many shell commands in this book start with #. You should run these commands as
the superuser (root), so they require extra caution. The best practice when running
them is to use sudo in order to provide some protection and a log that you can look up
later for possible errors. Yow'll see how to do this in Section 2.20.

Now enter this command:

$ cat /etc/passwd

This command displays the contents of the /etc/passwd system information
file and then returns your shell prompt. Don’t worry about what this file does
right now; you’ll learn all about it in Chapter 7.

Commands usually begin with a program to run and may be followed
by arguments that tell the program what to operate on and how to do so.
Here, the program is cat, and there is one argument, /etc/passwd. Many
arguments are options that modify the default behavior of a program and
typically begin with a dash (-). You'll see this shortly in the discussion of 1s.
There are some exceptions that don’t follow this normal command struc-
ture, however, such as shell built-ins and the temporary use of environment
variables.

2.2.2 cat

The cat program is one of the easiest in Unix to understand; it simply out-
puts the contents of one or more files or another source of input. The gen-
eral syntax of a cat command is as follows:

$ cat file1 file2 ...

Basic Commands and Directory Hierarchy 13

14

Chapter 2

When you run this command, cat prints the contents of file1, file2,
and any other files that you specify as arguments (denoted by ... in the
preceding example), and then exits. The program is called cat because it
performs concatenation when it prints the contents of more than one file.
There are many ways to run cat; let’s use it to explore Unix 1/0.

2.2.3 Standard Input and Standard Output

Unix processes use I/O streams to read and write data. Processes read data
from input streams and write data to output streams. Streams are very flex-
ible. For example, the source of an input stream can be a file, a device, a
terminal window, or even the output stream from another process.

To see an input stream at work, enter cat (with no arguments) and
press ENTER. This time, you won’t get any immediate output, and you
won’t get your shell prompt back because cat is still running. Now type
anything and press ENTER at the end of each line. When used like this,
the cat command repeats any line that you type. Once you're sufficiently
bored, press CTRL-D on an empty line to terminate cat and return to the
shell prompt.

The reason cat adopts an interactive behavior here has to do with
streams. When you don’t specify an input filename, cat reads from the
standard input stream provided by the Linux kernel rather than a stream
connected to a file. In this case, the standard input is connected to the
terminal where you run cat.

Pressing CTRL-D on an empty line stops the current standard input entry from the
terminal with an EOF (end-of-file) message (and often terminates a program). Don’t
confuse this with CTRL-C, which usually terminates a program regardless of its
input or outpud.

Standard output is similar. The kernel gives each process a standard out-
put stream where it can write its output. The cat command always writes its
output to the standard output. When you ran cat in the terminal, the stan-
dard output was connected to that terminal, so that’s where you saw the
output.

Standard input and output are often abbreviated as stdin and stdout.
Many commands operate as cat does; if you don’t specify an input file, the
command reads from stdin. Output is a little different. Some programs
(like cat) send output only to stdout, but others have the option to send
output directly to files.

There is a third standard I/0 stream, called standard error. You’ll see it
in Section 2.14.1.

One of the best features of standard streams is that you can easily
manipulate them to read and write to places other than the terminal,
as you’ll learn in Section 2.14. In particular, you’ll learn how to connect
streams to files and other processes.

2.3

Basic Commands

Now let’s look at some more Unix commands. Most of the following programs
take multiple arguments, and some have so many options and formats that
an unabridged listing would be pointless. This is a simplified list of the basic
commands; you don’t need all of the details just yet.

231 Is

The 1s command lists the contents of a directory. The default is the current
directory, but you can add any directory or file as an argument, and there
are many useful options. For example, use 1s -1 for a detailed (long) list-
ing and 1s -F to display file type information. Here is a sample long listing;
itincludes the owner of the file (column 3), the group (column 4), the file
size (column 5), and the modification date/time (between column 5 and
the filename):

$1s -1
total 3616
-Iw-r--r-- 1 juser users 3804 May 28 10:40 abusive.c
-Iw-r--r-- 1 juser users 4165 Aug 13 10:01 battery.zip
-rw-r--r-- 1 juser users 131219 Aug 13 10:33 beav_1.40-13.tar.gz
-Iw-r--r-- 1 juser users 6255 May 20 14:34 country.c
drwxr-xr-x 2 juser users 4096 Jul 17 20:00 cs335
-IWXI-XI-X 1 juser users 7108 Jun 16 13:05 dhry
-Iw-r--r-- 1 juser users 11309 Aug 13 10:26 dhry.c
-Iw-r--r-- 1 juser users 56 Jul 9 15:30 doit
drwxr-xr-x 6 juser users 4096 Feb 20 13:51 dw

3

drwxr-xr-x 3 juser users 4096 Jul 1 16:05 hough-stuff

You'll learn more about column 1 of this output in Section 2.17. You
can ignore column 2 for now; it’s the number of hard links to the file and is
explained in Section 4.6.

232 o

In its simplest form, cp copies files. For example, to copy file1 to file2,
enter this:

$ cp file1 file2

You can also copy a file to another directory, keeping the same file
name in that directory:

$ cp file dir

To copy more than one file to a directory (folder) named dir, try some-
thing like this example, which copies three files:

$ cp file1 file2 file3 dir

Basic Commands and Directory Hierarchy 15

16

2.4

Chapter 2

23.3 mv

The mv (move) command works much like cp. In its simplest form, it
renames a file. For example, to rename file1 to file2, enter this:

$ mv file1 file2

You can also use mv to move files to other directories in the same way as cp.

2.34 touch

The touch command can create a file. If the target file already exists, touch
doesn’t change the file, but it does update the file’s modification timestamp.
For example, to create an empty file, enter this:

$ touch file

Then run 1s -1 on that file. You should see output like the following,
where the date and time indicate when you ran touch:

$ 1s -1 file
-rw-r--r-- 1 juser users O May 21 18:32 file

To see a timestamp update, wait at least a minute and then run the
same touch command again. The timestamp returned by 1s -1 will update.

235 m

The rm command deletes (removes) a file. After you remove a file, it’s usu-
ally gone from your system and generally cannot be undeleted unless you
restore it from a backup.

$ rm file

2.3.6 echo

The echo command prints its arguments to the standard output:

$ echo Hello again.
Hello again.

The echo command is very useful for finding expansions of shell globs
(“wildcards” such as *) and variables (such as $HOME), which you will encoun-
ter later in this chapter.

Navigating Directories

The Unix directory hierarchy starts at / also called the root directory. The
directory separator is the slash (/), not the backslash (\). There are several

standard subdirectories in the root directory, such as /usr, as you’ll learn in
Section 2.19.

When you refer to a file or directory, you specify a path or pathname.
When a path starts with / (such as /usr/lib), it’s a full or absolute path.

A path component identified by two dots (..) specifies the parent of a
directory. For example, if you're working in /usr/lib, the path .. would refer
to /usr. Similarly, ../bin would refer to /usr/bin.

One dot (.) refers to the current directory; for example, if you're in
/usr/lib, the path . is still /ust/lib, and ./X11 is /usr/lib/X11. You won’t have
to use . very often because most commands default to the current directory
if a path doesn’t start with / (so you could just use X1I instead of ./X11 in
the preceding example).

A path not beginning with /is called a relative path. Most of the time,
you’ll work with relative pathnames, because you’ll already be in or near
the directory you need.

Now that you have a sense of the basic directory mechanics, here are
some essential directory commands.

24.1

The current working directory is the directory that a process (such as the
shell) is currently in. In addition to the default shell prompt in most Linux
distributions, you can see your current directory with the pwd command,
described in Section 2.5.3.

Each process can independently set its own current working directory.
The cd command changes the shell’s current working directory:

$ cd dir

If you omit dir, the shell returns to your home directory, the directory
where you started when you first logged in. Some programs abbreviate your
home directory with the ~ symbol (a tilde).

The cd command is a shell built-in. It wouldn’t work as a separate program because
if it were to run as a subprocess, it could not (normally) change its parent’s current
working directory. This may not seem a particularly important distinction at the
moment, but there are times when knowing this fact can clear up confusion.

24.2 mkdir

The mkdir command creates a new directory dir:

$ mkdir dir

24.3 rmdir

The rmdir command removes the directory dir:

$ rmdir dir

Basic Commands and Directory Hierarchy 17

18

Chapter 2

If dir isn’t empty, this command fails. However, if you're impatient, you
probably don’t want to laboriously delete all the files and subdirectories
inside dir first. You can use rm -r dir to delete a directory and its contents,
but be careful! This is one of the few commands that can do serious dam-
age, especially if you run it as the superuser. The -r option specifies recursive
delete to repeatedly delete everything inside dir. Don’t use the -r flag with
globs such as a star (*). And above all, always double-check your command
before you run it.

2.4.4 Shell Globbing (“Wildcards”)

The shell can match simple patterns to file and directory names, a process
known as globbing. This is similar to the concept of wildcards in other systems.
The simplest of these is the glob character *, which tells the shell to match
any number of arbitrary characters. For example, the following command
prints a list of files in the current directory:

$ echo *

The shell matches arguments containing globs to filenames, substitutes
the filenames for those arguments, and then runs the revised command
line. The substitution is called expansion because the shell substitutes all
matching filenames for a simplified expression. Here are some ways to use *
to expand filenames:

e at* expands to all filenames that start with at.
e *at expands to all filenames that end with at.

e *at* expands to all filenames that contain at.

If no files match a glob, the bash shell performs no expansion, and the
command runs with literal characters such as *. For example, try a com-
mand such as echo *dfkdsafh.

If you’re used to the Windows command prompt, you might instinctively type * .* to
match all files. Break this habit now. In Linux and other versions of Unix, you must
use * to match all files. In the Unix shell, *.* matches only files and directories that
contain the dot (.) character in their names. Unix filenames do not need extensions
and often do not carry them.

Another shell glob character, the question mark (?), instructs the shell
to match exactly one arbitrary character. For example, b?at matches boat
and brat.

If you don’t want the shell to expand a glob in a command, enclose the
glob in single quotes (''). For example, the command echo '*' prints a star.
You will find this handy for a few of the commands described in the next

NOTE

2.5

section, such as grep and find. (You’ll learn more much about quoting in
Section 11.2.)

1t is important to remember that the shell performs expansions before running com-
mands, and only then. Therefore, if a * makes it to a command without expanding,
the shell won’t do anything more with it; it’s up to the command to decide what it
wants to do.

There is more to the shell’s pattern-matching capabilities, but * and ?
are what you need to know now. Section 2.7 describes glob behavior with
those funny files that start with a dot.

Intermediate Commands

This section describes the most essential intermediate Unix commands.

2.5.1 grep

The grep command prints the lines from a file or input stream that match an
expression. For example, to print the lines in the /etc/passwd file that contain
the text root, enter this:

$ grep root /etc/passwd

The grep command is extraordinarily handy when operating on multiple
files at once because it prints the filename in addition to the matching line.
For example, if you want to check every file in /etc that contains the word root,
you could use this command:

$ grep root /etc/*

Two of the most important grep options are -i (for case-insensitive
matches) and -v (which inverts the search—that is, prints all lines that
don’t match). There is also a more powerful variant called egrep (which is
just a synonym for grep -E).

grep understands regular expressions, patterns that are grounded in
computer science theory and are very common in Unix utilities. Regular
expressions are more powerful than wildcard-style patterns, and they have
a different syntax. There are three important things to remember about
regular expressions:

e .*matches any number of characters, including none (like the * in
globs and wildcards).

e .+ matches any one or more characters.

e . matches exactly one arbitrary character.

Basic Commands and Directory Hierarchy 19

20

Chapter 2

The grep(1) manual page contains a detailed description of regular expressions, but it
can be somewhat difficult to read. To learn more, you can read Mastering Regular
Expressions, 3rd edition, by Jeffrey E. F. Friedl (O’Reilly, 20006), or see the regular
expressions chapter of Programming Perl, 4th edition, by Tom Christensen et al.
(O’Reilly, 2012). If you like math and are interested in where regular expressions come
from, look up Introduction to Automata Theory, Languages, and Computation,

3rd edition, by Jeffrey Ullman and John Hopcroft (Prentice Hall, 2006).

2.5.2 less

The less command comes in handy when a file is really big or when a com-
mand’s output is long and scrolls off the top of the screen.

To page through a big file like /usy/share/dict/words, you can use the
command less /usr/share/dict/words. When running less, you’ll see the con-
tents of the file one screenful at a time. Press the spacebar to go forward in
the file and press b (lowercase) to skip back one screenful. To quit, press q.

The less command is an enhanced version of an older program named more. Linux
desktops and servers have less, but it’s not standard on many embedded systems and
other Unix systems. If you ever run into a situation when you can’t use less, try more.

You can also search for text inside less. For example, to search forward
for a word, you can type /word, and to search backward, you can use ?word.
When you find a match, press n to continue searching.

Asyou’ll learn in Section 2.14, you can send the standard output of
nearly any program directly to another program’s standard input. This is
exceptionally useful when you have a command with a lot of output to sift
through and you’d like to use something like less to view the output. Here’s
an example of sending the output of a grep command to less:

$ grep ie /usr/share/dict/words | less

Try this command out for yourself. You’ll probably find many similar
uses for less.

253 pwd

The pwd (print working directory) program simply outputs the name of the
current working directory. You may be wondering why you need this when
most Linux distributions set up user accounts with the current working
directory in the prompt. There are two reasons.

First, not all prompts include the current working directory, especially
because you may want to get rid of it in your own prompt because it takes
up a lot of space. If you do so, you need pwd.

Second, the symbolic links that you’ll learn about in Section 2.17.2 can
sometimes obscure the true full path of the current working directory. Use
pwd -P to eliminate this confusion.

254 diff

To see the differences between two text files, use diff:

$ diff file1 file2

Several options can control the format of the output, and the default
output format is often the most comprehensible for human beings. However,
most programmers prefer the output from diff -u when they need to send
the output to someone else, because automated tools have an easier time
with this format.

2.5.5 file

If you see a file and are unsure of its format, try using the file command to
see if the system can guess it:

$ file file

You may be surprised by how much this innocent-looking command
can do.

2.5.6 find and locate

It’s frustrating when you know that a certain file is in a directory tree some-
where but you just don’t know where. Run find to find file in dir as follows:

$ find dir -name file -print

Like most programs in this section, find is capable of some fancy stuff.
However, don’t try options such as -exec before you know the form shown
here by heart and understand why you need the -name and -print options.
The find command accepts special pattern-matching characters such as *,
but you must enclose them in single quotes ('*") to protect the special char-
acters from the shell’s own globbing feature. (Recall from Section 2.4.4 that
the shell expands globs before running commands.)

Most systems also have a locate command for finding files. Rather than
searching for a file in real time, locate searches an index that the system
builds periodically. Searching with locate is much faster than find, but if the
file you're looking for is newer than the index, locate won’t find it.

2.5.7 head and tail

The head and tail commands allow you to quickly view a portion of a file or
stream of data. For example, head /etc/passwd shows the first 10 lines of the
password file, and tail /etc/passwd shows the last 10 lines.

To change the number of lines to display, use the -n option, where n is
the number of lines you want to see (for example, head -5 /etc/passwd). To
print lines starting at line n, use tail +n.

Basic Commands and Directory Hierarchy 21

22

2.6

2.7

NOTE

2.8

Chapter 2

2.5.8 sort

The sort command quickly puts the lines of a text file in alphanumeric
order. If the file’s lines start with numbers and you want to sort in numeri-
cal order, use the -n option. The -r option reverses the order of the sort.

Changing Your Password and Shell

Use the passwd command to change your password. You’ll be asked for your
old password and then prompted for your new password twice.

The best passwords tend to be long “nonsense” sentences that are
easy to remember. The longer the password (in terms of character length),
the better; try for 16 characters or more. (In the very old days, the number
of characters you could use was limited, so you were advised to add strange
characters and such.)

You can change your shell with the chsh command (to an alternative such
as zsh, ksh or tcsh), but keep in mind that this book assumes you’re running
bash, so if you make a change, some of the examples may not work.

Dot Files

Change to your home directory if you're not already there, type 1s to take a
look around, and then run 1s -a. Do you see the difference in the output?
When you run 1s without the -a, you won’t see the configuration files called
dot files. These are files and directories whose names begin with a dot (.).
Common dot files are .bashrc and .login, and there are dot directories, too,
such as .ssh.

There’s nothing special about dot files or directories. Some programs
don’t show them by default so that you won’t see a complete mess when list-
ing the contents of your home directory. For example, 1s doesn’t list dot
files unless you use the -a option. In addition, shell globs don’t match
dot files unless you explicitly use a pattern such as .*.

You can run into problems with globs because . * matches . and .. (the current and
parent directories). You may wish to use a pattern such as .[*.]* or.2?* to get all dot
files except the current and parent dirvectories.

Environment and Shell Variables

The shell can store temporary variables, called shell variables, containing
the values of text strings. Shell variables are very useful for keeping track
of values in scripts, and some shell variables control the way the shell
behaves. (For example, the bash shell reads the PS1 variable before display-
ing the prompt.)

29

To assign a value to a shell variable, use the equal sign (=). Here’s a
simple example:

$ STUFF=blah

The preceding example sets the value of the variable named STUFF to blah.
To access this variable, use $STUFF (for example, try running echo $STUFF). You’'ll
learn about the many uses of shell variables in Chapter 11.

Don’t put any spaces around the = when assigning a variable.

An environment variable is like a shell variable, but it’s not specific to the
shell. All processes on Unix systems have environment variable storage. The
main difference between environment and shell variables is that the operat-
ing system passes all of your shell’s environment variables to programs that
the shell runs, whereas shell variables cannot be accessed in the commands
that you run.

You assign an environment variable with the shell’s export command.
For example, if you’d like to make the $STUFF shell variable into an environ-
ment variable, use the following:

$ STUFF=blah
$ export STUFF

Because child processes inherit environment variables from their par-
ent, many programs read them for configuration and options. For example,
you can put your favorite less command-line options in the LESS environ-
ment variable, and less will use those options when you run it. (Many man-
ual pages contain a section labeled ENVIRONMENT that describes these
variables.)

The Command Path

PATH is a special environment variable that contains the command path (or
path for short), a list of system directories that the shell searches when try-
ing to locate a command. For example, when you run 1s, the shell searches
the directories listed in PATH for the 1s program. If programs with the same
name appear in several directories in the path, the shell runs the first
matching program.

If you run echo $PATH, you’ll see that the path components are separated
by colons (:). For example:

$ echo $PATH
Jusr/local/bin:/usr/bin:/bin

Basic Commands and Directory Hierarchy 23

2

2.10

Chapter 2

To tell the shell to look in more places for programs, change the PATH
environment variable. For example, by using this command, you can add
a directory dir to the beginning of the path so that the shell looks in dir
before looking in any of the other PATH directories:

$ PATH=dir:$PATH

Or you can append a directory name to the end of the PATH variable,
causing the shell to look in dir last:

$ PATH=$PATH:dir

You can accidentally wipe out your entive path if you mistype $PATH when modifying
your path. If this happens, don’t panic! The damage isn’t permanent; you can just
start a new shell. (For a lasting effect, you need to mistype it when editing a certain
configuration file, and even then it isn’t difficult to rectify.) The easiest way to return
to normal is to close the current terminal window and start another.

Special Characters

When discussing Linux with others, you should know a few names for some of
the special characters that you’ll encounter. If you're amused by this sort of
thing, see the “Jargon File” (http://www.catb.org/jargon/html/) or its printed
companion, The New Hacker’s Dictionary, 3rd edition, by Eric S. Raymond
(MIT Press, 1996).

Table 2-1 describes a select set of the special characters, many of which
you've already seen in this chapter. Some utilities, such as the Perl program-
ming language, use almost all of these special characters! (Keep in mind
that these are the American names for the characters.)

Table 2-1: Special Characters

Character Name(s) Uses
* star, asterisk Regular expression, glob character
dot Current directory, file/hostname delimiter
! bang Negation, command history
| pipe Command pipes
/ (forward) slash Directory delimiter, search command
\ backslash Literals, macros (never directories)
$ dollar Variables, end of line

tick, (single) quote
backtick, backquote
double quote

caret

Literal strings
Command substitution
Semi-literal strings

Negation, beginning of line

NOTE

2.11

2.12

Character Namel(s) Uses

~ tilde, squiggle Negation, directory shortcut

hash, sharp, pound Comments, preprocessor, substitutions
[1] (square) brackets Ranges

{1} braces, (curly) brackets Statement blocks, ranges

_ underscore, under Cheap substitute for a space used when

spaces aren't wanted or allowed, or when
autocomplete algorithms get confused

You will often see control characters marked with a caret; for example, "C for CTRL-C.

Command-Line Editing

As you play with the shell, notice that you can edit the command line using
the left and right arrow keys, as well as page through previous commands
using the up and down arrows. This is standard on most Linux systems.

However, it’s a good idea to forget about the arrow keys and use control
key combinations instead. If you learn the ones listed in Table 2-2, you’ll
find that you’re better able to enter text in the many Unix programs that
use these standard keystrokes.

Table 2-2: Command-Line Keystrokes

Keystroke Action

CTRL-B Move the cursor left

CTRL-F Move the cursor right

CTRL-P View the previous command (or move the cursor up)
CTRL-N View the next command (or move the cursor down)
CTRL-A Move the cursor to the beginning of the line

CTRLE Move the cursor to the end of the line

CTRL-W Erase the preceding word

CTRL-U Erase from cursor to beginning of line

CTRLK Erase from cursor to end of line

CTRLY Paste erased text (for example, from CTRL-U)

Text Editors

Speaking of editing, it’s time to learn an editor. To get serious with Unix, you
must be able to edit text files without damaging them. Most parts of the sys-

tem use plaintext configuration files (like the ones in /etc). It’s not difficult to
edit files, but you will do it so often that you need a powerful tool for the job.

Basic Commands and Directory Hierarchy 25

26

NOTE

2.13

Chapter 2

You should try to learn one of the two de facto standard Unix text edi-
tors, vi and Emacs. Most Unix wizards are religious about their choice of
editor, but don'’t listen to them. Just choose for yourself. If you choose one
that matches the way that you work, you'll find it easier to learn. Basically,
the choice comes down to this:

e Ifyou want an editor that can do almost anything and has extensive
online help, and you don’t mind doing some extra typing to get these
features, try Emacs.

e Ifspeed is everything, give vi a shot; it “plays” a bit like a video game.

Learning the vi and Vim Editors: Unix Text Processing, 7th edition, by Arnold
Robbins, Elbert Hannah, and Linda Lamb (O’Reilly, 2008), can tell you
everything you need to know about vi. For Emacs, use the online tutorial:
start Emacs, press CTRL-H, and then type T. Or read GNU Emacs Manual,
18th edition, by Richard M. Stallman (Free Software Foundation, 2018).

You might be tempted to experiment with a friendlier editor when you
first start out, such as nano, Pico, or one of the myriad GUI editors out
there, but if you tend to make a habit out of the first thing that you use, you
don’t want to go this route.

Editing text is where yow'll first start to see a difference between the terminal and
the GUI. Editors such as vi run inside the terminal window, using the standard
terminal 1/0 interface. GUI editors start their own window and present their own
interface, independent of terminals. Emacs runs in a GUI by default but will run
in a terminal window as well.

Getting Online Help

Linux systems come with a wealth of documentation. For basic commands,
the manual pages (or man pages) will tell you what you need to know. For
example, to see the manual page for the 1s command, run man as follows:

$ man ls

Most manual pages concentrate primarily on reference information,
perhaps with some examples and cross-references, but that’s about it. Don’t
expect a tutorial, and don’t expect an engaging literary style.

When programs have many options, the manual page often lists the
options in some systematic way (for example, in alphabetical order), but it
won'’t tell you what the important ones are. If you're patient, you can usu-
ally find what you need to know in the man page. If you're impatient, ask a
friend—or pay someone to be your friend so that you can ask him or her.

To search for a manual page by keyword, use the -k option:

$ man -k keyword

This is helpful if you don’t quite know the name of the command
that you want. For example, if you're looking for a command to sort
something, run:

$ man -k sort

--snip--

comm (1) - compare two sorted files line by line
gsort (3) - sorts an array

sort (1) - sort lines of text files

sortm (1) - sort messages

tsort (1) - perform topological sort

--snip--

The output includes the manual page name, the manual section
(see below), and a quick description of what the manual page contains.

If you have any questions about the commands described in the previous sections, you
may be able to find the answers by using the man command.

Manual pages are referenced by numbered sections. When someone
refers to a manual page, they often put the section number in parentheses

next to the name, like ping(8). Table 2-3 lists the sections and their numbers.

Table 2-3: Online Manual Sections

Section Description

1 User commands

Kernel system calls

Higher-level Unix programming library documentation
Device interface and driver information

File descriptions (system configuration files)

Games

File formats, conventions, and encodings (ASCII, suffixes, and so on)

0 N O O h WO N

System commands and servers

Sections 1, 5, 7, and 8 should be good supplements to this book.
Section 4 may be of marginal use, and Section 6 would be great if only it
were a little larger. You probably won’t be able to use Section 3 if you aren’t
a programmer, but you may be able to understand some of the material in
Section 2 once you've read more about system calls in this book.

Some common terms have many matching manual pages across several
sections. By default, man displays the first page that it finds. You can select a
manual page by section. For example, to read the /et¢/passwd file description
(as opposed to the passwd command), you can insert the section number
before the page name like so:

$ man 5 passwd

Basic Commands and Directory Hierarchy 27

28

2.14

Chapter 2

Manual pages cover the essentials, but there are many more ways to get
online help (aside from searching the internet). If you're just looking for
a certain option for a command, try entering a command name followed
by --help or -h (the option varies from command to command). You may
get a deluge (as in the case of 1s --help), or you may find just what you’re
looking for.

Some time ago, the GNU Project decided that it didn’t like manual
pages very much and switched to another format called ¢nfo (or texinfo).
Often this documentation goes further than a typical manual page does,
but it can be more complex. To access an info manual, use info with the
command name:

$ info command

If you don’t like the info reader, you can send the output to less
(justadd | less).

Some packages dump their available documentation into /usr/share/doc
with no regard for online manual systems such as man or info. See this direc-
tory on your system if you find yourself searching for documentation—and,
of course, search the internet.

Shell Input and Output

Now that youre familiar with basic Unix commands, files, and directories,
you're ready to learn how to redirect standard input and output. Let’s start
with standard output.

To send the output of command to a file instead of the terminal, use the >
redirection character:

$ command > file

The shell creates file if it does not already exist. If file exists, the shell
erases (clobbers) the original file first. (Some shells have parameters that
prevent clobbering. For example, you can enter set -C to avoid clobbering
in bash.)

You can append the output to the file instead of overwriting it with
the >> redirection syntax:

$ command >> file

This is a handy way to collect output in one place when executing
sequences of related commands.

To send the standard output of a command to the standard input of
another command, use the pipe character (|). To see how this works, try
these two commands:

$ head /proc/cpuinfo
$ head /proc/cpuinfo | tr a-z A-Z

2.15

You can send output through as many piped commands as you wish;
just add another pipe before each additional command.

2.14.1 Standard Error

Occasionally, you may redirect standard output but find that the program
still prints something to the terminal. This is called standard error (stderr);
it’s an additional output stream for diagnostics and debugging. For exam-
ple, this command produces an error:

$ 1s [FEFEFEFEF > f

After completion, fshould be empty, but you still see the following
error message on the terminal as standard error:

1s: cannot access /fffffffff: No such file or directory

You can redirect the standard error if you like. For example, to
send standard output to fand standard error to ¢, use the 2> syntax,
like this:

$ 1s /FEFEFEFEF > £ 2> e

The number 2 specifies the stream ID that the shell modifies. Stream ID
1 is standard output (the default), and 2 is standard error.

You can also send the standard error to the same place as stdout with
the >& notation. For example, to send both standard output and standard
error to the file named f, try this command:

$ 1s /FFFFFFFEF > £ 2581

2.14.2 Standard Input Redirection

To channel a file to a program’s standard input, use the < operator:

$ head < /proc/cpuinfo

You will occasionally run into a program that requires this type of redi-
rection, but because most Unix commands accept filenames as arguments,
this isn’t very common. For example, the preceding command could have
been written as head /proc/cpuinfo.

Understanding Error Messages

When you encounter a problem on a Unix-like system such as Linux, you
must read the error message. Unlike messages from other operating systems,
Unix errors usually tell you exactly what went wrong.

Basic Commands and Directory Hierarchy 29

30

NOTE

Chapter 2

2.15.1 Anatomy of a Unix Error Message

Most Unix programs generate and report the same basic error messages,
but there can be subtle differences between the output of any two pro-
grams. Here’s an example that you’ll certainly encounter in some form
or other:

$ 1s /dsafsda
1s: cannot access /dsafsda: No such file or directory

There are three components to this message:

e The program name, 1s. Some programs omit this identifying informa-
tion, which can be annoying when you’re writing shell scripts, but it’s
not really a big deal.

e The filename, /dsafsda, which is a more specific piece of information.
There’s a problem with this path.

e The error No such file or directory indicates the problem with the
filename.

Putting it all together, you get something like “1s tried to open /dsafsda
but couldn’t because it doesn’t exist.” This may seem obvious, but these
messages can get a little confusing when you run a shell script that includes
an erroneous command under a different name.

When troubleshooting errors, always address the first error first. Some
programs report that they can’t do anything before reporting a host of
other problems. For example, say you run a fictitious program called scumd
and you see this error message:

scumd: cannot access /etc/scumd/config: No such file or directory

Following this is a huge list of other error messages that looks like a
complete catastrophe. Don’t let those other errors distract you. You prob-
ably just need to create /etc/scumd/config.

Don’t confuse error messages with warning messages. Warnings often look like errors,
but they contain the word warning. A warning usually means something is wrong
but the program will try to continue running anyway. 1o fix a problem noted in a
warning message, you may have to hunt down a process and kill it before doing any-
thing else. (Youw'll learn about listing and killing processes in Section 2.16.)

2.15.2 Common Errors

Many errors youw’ll encounter in Unix programs result from things that
can go wrong with files and processes. Quite a few of these errors stem
directly from conditions that kernel system calls encounter, so you can
learn something about how the kernel sends problems back to processes
by looking at them.

No such file or directory

This is the number one error. You tried to access a file that doesn’t exist.
Because the Unix file I/O system doesn’t discriminate much between files
and directories, this error message covers both cases. You get it when you
try to read a file that doesn’t exist, when you try to change to a directory
that isn’t there, when you try to write to a file in a directory that doesn’t
exist, and so on. This error is also known as ENOENT, short for “Error NO
ENTity.”

If you’re intevested in system calls, this is usually the result of open() returning
ENOENT: See the open(2) manual page for more information on the errors it can
encounter.

File exists

In this case, you probably tried to create a file that already exists. This is
common when you try to create a directory with the same name as a file.

Not a directory, Is a directory

These messages pop up when you try to use a file as a directory, or a directory
as a file. For example:

$ touch a
$ touch a/b
touch: a/b: Not a directory

Notice that the error message applies only to the a part of a/b. When
you encounter this problem, you may need to dig around a little to find the
path component that is being treated like a directory.

No space left on device

You're out of disk space.

Permission denied

You get this error when you attempt to read or write to a file or directory
that you're not allowed to access (you have insufficient privileges). This
error also shows when you try to execute a file that does not have the exe-
cute bit set (even if you can read the file). You’ll read more about permis-
sions in Section 2.17.

Operation not permitted

This usually happens when you try to kill a process that you don’t own.

Segmentation fault, Bus error

A segmentation fault essentially means that the person who wrote the pro-
gram that you just ran screwed up somewhere. The program tried to access

Basic Commands and Directory Hierarchy 31

32

2.16

NOTE

Chapter 2

a part of memory that it was not allowed to touch, and the operating system
killed it. Similarly, a bus error means that the program tried to access some
memory in a way it shouldn’t have. When you get one of these errors, you
might be giving a program some input that it did not expect. In rare cases,
it might be faulty memory hardware.

Listing and Manipulating Processes

Recall from Chapter 1 that a process is a running program. Each process on
the system has a numeric process ID (PID). For a quick listing of running pro-
cesses, just run ps on the command line. You should get a list like this one:

$ ps

PID TTY STAT TIME COMMAND

520 p0 S 0:00 -bash

545 ? S 3:59 /usr/X11R6/bin/ctwm -W

548 ? S 0:10 xclock -geometry -0-0
2159 pd SW 0:00 /usr/bin/vi lib/addresses
31956 p3 R 0:00 ps

The fields are as follows:
PID The process ID.

TTY The terminal device where the process is running. More about
this later.

STAT The process status—that is, what the process is doing and where
its memory resides. For example, S means sleeping and R means run-
ning. (See the ps(1) manual page for a description of all the symbols.)

TIME The amount of CPU time in minutes and seconds that the pro-
cess has used so far. In other words, the total amount of time that the
process has spent running instructions on the processor. Remember
that because processes don’t run constantly, this is different from the
time since the process started (or “wall-clock time”).

COMMAND This one might seem obvious as the command used to run

the program, but be aware that a process can change this field from its
original value. Furthermore, the shell can perform glob expansion, and
this field will reflect the expanded command instead of what you enter
at the prompt.

PIDs are unique for each process running on a system. However, after a process termi-
nates, the kernel can eventually reuse the PID for a new process.

2.16.1 ps Command Options

The ps command has many options. To make things more confusing, you
can specify options in three different styles—Unix, BSD, and GNU. Many

NOTE

people find the BSD style to be the most comfortable (perhaps because it
involves less typing), so that’s what we’ll use in this book. Here are some of
the most useful option combinations:

ps x Show all of your running processes.
ps ax Show all processes on the system, not just the ones you own.
ps u Include more detailed information on processes.

ps w Show full command names, not just what fits on one line.

As with other programs, you can combine options, as in ps aux and ps auxw.
To check on a specific process, add its PID to the argument list of the
ps command. For example, to inspect the current shell process, you can
use ps u $$ (3% is a shell variable that evaluates to the current shell’s PID).
You'll find information on the administration commands top and 1sof in
Chapter 8. These can be useful for locating processes, even when you’re
doing something other than system maintenance.

2.16.2 Process Termination

To terminate a process, you send it a signal—a message to a process from the
kernel—with the kill command. In most cases, all you need to do is this:

$ kill pid

There are many types of signals. The default (used above) is TERM, or ter-
minate. You can send different signals by adding an extra option to kill. For
example, to freeze a process instead of terminating it, use the STOP signal:

$ kill -STOP pid

A stopped process is still in memory, ready to pick up where it left off.
Use the CONT signal to continue running the process again:

$ kill -CONT pid

Using CTRL-C to terminate a process that is running in the current terminal is the
same as using kill to end the process with the INT (interrupt) signal.

The kernel gives most processes a chance to clean up after themselves
upon receiving signals (with the signal handler mechanism). However, some
processes may choose a nonterminating action in response to a signal, get
wedged in the act of trying to handle it, or simply ignore it, so you might
find a process still running after you try to terminate it. If this happens and
you really need to kill a process, the most brutal way to terminate it is with
the KILL signal. Unlike other signals, KILL cannot be ignored; in fact, the
operating system doesn’t even give the process a chance. The kernel just ter-
minates the process and forcibly removes it from memory. Use this method
only as a last resort.

Basic Commands and Directory Hierarchy 33

34

Chapter 2

You should not kill processes indiscriminately, especially if you don’t
know what they’re doing. You may be shooting yourself in the foot.

You may see other users entering numbers instead of names with kill—
for example, kill -9 instead of kill -KILL. This is because the kernel uses
numbers to denote the different signals; you can use kill this way if you
know the number of the signal that you want to send. Run kill -1 to geta
mapping of signal numbers to names.

2.16.3 Job Control

Shells support job control, a way to send TSTP (similar to STOP) and CONT signals
to programs by using various keystrokes and commands. This allows you to
suspend and switch between programs you're using. For example, you can
send a TSTP signal with CTRL-Z and then start the process again by entering
fg (bring to foreground) or bg (move to background; see the next section).
But despite its utility and the habits of many experienced users, job control
is not necessary and can be confusing for beginners: It’s common for users
to press CTRL-Z instead of CTRL-C, forget about what they were running,
and eventually end up with numerous suspended processes.

To see if you've accidentally suspended any processes on your current terminal, run
the jobs command.

If you want to run multiple programs, run each in a separate terminal
window, put noninteractive processes in the background (as explained in
the next section), and learn to use the screen and tmux utilities.

2.16.4 Background Processes

Normally, when you run a Unix command from the shell, you don’t get
the shell prompt back until the program finishes executing. However, you
can detach a process from the shell and put it in the “background” with
the ampersand (&); this gives you the prompt back. For example, if you
have a large file that you need to decompress with gunzip (you’ll see this in
Section 2.18), and you want to do some other stuff while it’s running, run
a command like this one:

$ gunzip file.gz &

The shell should respond by printing the PID of the new background
process, and the prompt should return immediately so that you can con-
tinue working. If the process takes a very long time, it can even continue
to run after you log out, which comes in particularly handy if you have to
run a program that does a lot of number crunching. If the process finishes
before you log out or close the terminal window, the shell usually notifies
you, depending on your setup.

2.17

If you’re remotely accessing a machine and want to keep a program running when you
log out, you may need to use the nohup command, see its manual page for details.

The dark side of running background processes is that they may expect
to work with the standard input (or worse, read directly from the terminal).
If a program tries to read something from the standard input when it’s in
the background, it can freeze (try fg to bring it back) or terminate. Also,
if the program writes to the standard output or standard error, the output
can appear in the terminal window with no regard for anything else run-
ning there, meaning that you can get unexpected output when you’re work-
ing on something else.

The best way to make sure that a background process doesn’t bother
you is to redirect its output (and possibly input) as described in Section 2.14.

If spurious output from background processes gets in your way, learn
how to redraw the content of your terminal window. The bash shell and
most full-screen interactive programs support CTRL-L to redraw the entire
screen. If a program is reading from the standard input, CTRL-R usually
redraws the current line, but pressing the wrong sequence at the wrong
time can leave you in an even worse situation than before. For example,
entering CTRL-R at the bash prompt puts you in reverse isearch mode
(press ESC to exit).

File Modes and Permissions

Every Unix file has a set of permissions that determine whether you can read,
write, or run the file. Running 1s -1 displays the permissions. Here’s an
example of such a display:

-rw-r--r--@ 1 juser somegroup 7041 Mar 26 19:34 endnotes.html

The file’s mode @ represents the file’s permissions and some extra infor-
mation. There are four parts to the mode, as illustrated in Figure 2-1.

User permissions
Group permissions
Type —‘ 'J:IOther permissions
-IW-T--T--

Figure 2-1: The pieces of a file mode

The first character of the mode is the file type. A dash (-) in this posi-
tion, as in the example, denotes a regular file, meaning that there’s nothing
special about the file; it’s just binary or text data. This is by far the most
common kind of file. Directories are also common and are indicated by a d
in the file type slot. (Section 3.1 lists the remaining file types.)

Basic Commands and Directory Hierarchy 35

36

NOTE

Chapter 2

The rest of a file’s mode contains the permissions, which break down
into three sets: user; group, and other, in that order. For example, the rw-
characters in the example are the user permissions, the r-- characters that
follow are the group permissions, and the final r-- characters are the other
permissions.

Each permission set can contain four basic representations:

e rmeans that the file is readable.
¢ wmeans that the file is writable.
e xmeans that the file is executable (you can run it as a program).

e - means “nothing” (more specifically, the permission for that slot in the
set has not been granted).

The user permissions (the first set) pertain to the user who owns the
file. In the preceding example, that’s juser. The second set, group permis-
sions, are for the file’s group (somegroup in the example). Any user in that
group can take advantage of these permissions. (Use the groups command
to see what group you're in, and see Section 7.3.5 for more information.)

Everyone else on the system has access according to the third set, the
other permissions, which are sometimes called world permissions.

Each read, write, and execute permission slot is sometimes called a permission
bit because the underlying representation in the operating system is a series of bits.
Therefore, you may hear people refer to parts of the permissions as “the read bits.”

Some executable files have an s in the user permissions listing instead
of an x. This indicates that the executable is setuid, meaning that when you
execute the program, it runs as though the file owner is the user instead
of you. Many programs use this setuid bit to run as root in order to get the
privileges they need to change system files. One example is the passwd pro-
gram, which needs to change the /etc/passwd file.

2.17.1 Modifying Permissions

To change permissions on a file or directory, use the chmod command. First,
pick the set of permissions that you want to change, and then pick the bit
to change. For example, to add group (g) and world (o, for “other”) read (r)
permissions to file, you could run these two commands:

$ chmod g+r file
$ chmod o+r file

Or you could do it all in one shot:

$ chmod go+r file

NOTE

To remove these permissions, use go-r instead of go+r.

Obviously, you shouldn’t make files world-writable because doing so enables anyone
on your system to change them. But would this also allow anyone connected to the
internet to change them? Probably not, unless your system has a network security hole.
In that case, file permissions won’t help you anyway.

You may sometimes see people changing permissions with numbers, for
example:

$ chmod 644 file

This is called an absolute change because it sets all permission bits at
once. To understand how this works, you need to know how to represent the
permission bits in octal form (each numeral represents a number in base 8,
0 through 7, and corresponds to a permission set). See the chmod(1) man-
ual page or info manual for more.

You don’t really need to know how to construct absolute modes if you
prefer to use them; just memorize the modes that you use most often.

Table 2-4 lists the most common ones.

Table 2-4: Absolute Permission Modes

Mode Meaning Used for

644 user: read/write; group, other: read files

600 user: read/write; group, other: none files

755 user: read/write/execute; group, directories, programs
other: read/execute

700 user: read/write/execute; group, other: directories, programs
none

711 user: read/write/execute; group, other: directories
execute

Directories also have permissions. You can list the contents of a directory
if it’s readable, but you can only access a file in a directory if the directory
is executable. You need both in most cases; one common mistake people
make when setting the permissions of directories is to accidentally remove
the execute permission when using absolute modes.

Finally, you can specify a set of default permissions with the umask shell
command, which applies a predefined set of permissions to any new file you
create. In general, use umask 022 if you want everyone to be able to see all
of the files and directories that you create, and use umask 077 if you don’t. If
you want to make your desired permissions mask apply to new windows and
later sessions, you need to put the umask command with the desired mode in
one of your startup files, as discussed in Chapter 13.

Basic Commands and Directory Hierarchy 37

38

Chapter 2

2.17.2 Working with Symbolic Links

A symbolic link is a file that points to another file or a directory, effectively
creating an alias (like a shortcut in Windows). Symbolic links offer quick
access to obscure directory paths.

In a long directory listing, symbolic links look like this (notice the 1 as
the file type in the file mode):

lrwxrwxrwx 1 ruser users 11 Feb 27 13:52 somedir -> /home/origdir

If you try to access somedirin this directory, the system gives you /home/
origdir instead. Symbolic links are simply filenames that point to other
names. Their names and the paths to which they point don’t have to mean
anything. In the preceding example, /home/origdir doesn’t need to exist.

In fact, if /home/origdir does not exist, any program that accesses somedir
returns an error reporting that somedir doesn’t exist (except for 1s somedir,
a command that stupidly informs you that somediris somedir). This can be
baffling because you can see something named somedir right in front of
your eyes.

This is not the only way that symbolic links can be confusing. Another
problem is that you can’t identify the characteristics of a link target just by
looking at the name of the link; you must follow the link to see if it goes to
a file or directory. Your system may also have links that point to other links,
which are called chained symbolic links and can be a nuisance when you're
trying to track them down.

To create a symbolic link from target to linkname, use 1n -s as follows:

$ 1n -s target linkname

The linkname argument is the name of the symbolic link, the target
argument is the path of the file or directory that the link points to, and
the -s flag specifies a symbolic link (see the warning that follows).

When making a symbolic link, check the command twice before you
run it, because several things can go wrong. For example, if you acciden-
tally reverse the order of the arguments (1n -s linkname target), you're in
for some fun if linknameis a directory that already exists. If this is the case
(and it quite often is), 1n creates a link named target inside linkname, and
the link will point to itself unless linknameis a full path. If something goes
wrong when you create a symbolic link to a directory, check that directory
for errant symbolic links and remove them.

Symbolic links can also cause headaches when you don’t know that they
exist. For example, you can easily edit what you think is a copy of a file but
is actually a symbolic link to the original.

Don’t forget the -s option when creating a symbolic link. Without i, 1n creates a hard
link, giving an additional real filename to a single file. The new filename has the
status of the old one; it points (links) directly to the file data instead of to another file-
name as a symbolic link does. Hard links can be even more confusing than symbolic
links. Unless you understand the material in Section 4.6, avoid using them.

2.18

With all these warnings about symbolic links, you might be wondering
why anyone would want to use them. As it turns out, their pitfalls are signifi-
cantly outweighed by the power they provide for organizing files and their
ability to easily patch up small problems. One common use case is when
a program expects to find a particular file or directory that already exists
somewhere else on your system. You don’t want to make a copy, and if you
can’t change the program, you can just create a symbolic link from it to the
actual file or directory location.

Archiving and Compressing Files

Now that you've learned about files, permissions, and possible errors, you
need to master gzip and tar, two common utilities for compressing and bun-
dling files and directories.

2.18.1 gzip

The program gzip (GNU Zip) is one of the current standard Unix compression
programs. A file that ends with .gzis a GNU Zip archive. Use gunzip file.gz
to uncompress <file>.gz and remove the suffix; to compress the file again, use

gzip file.

2.18.2 tar

Unlike the ZIP programs for other operating systems, gzip does not create
archives of files; that is, it doesn’t pack multiple files and directories into a
single file. To create an archive, use tar instead:

$ tar cvf archive.tar filei file2 ...

Archives created by tar usually have a .tar suffix (this is by convention;
it isn’t required). For example, in the previous command, file1, file2, and
so on are the names of the files and directories that you wish to archive in
<archive>.tar. The c flag activates create mode. The v and f flags have more
specific roles.

The v flag activates verbose diagnostic output, causing tar to print the
names of the files and directories in the archive when it encounters them.
Adding another v causes tar to print details such as file size and permis-
sions. If you don’t want tar to tell you what it’s doing, omit the v flag.

The f flag denotes the file option. The next argument on the command
line after the f flag must be the archive file for tar to create (in the preced-
ing example, it is <archive>.tar). You must use this option followed by a file-
name at all times, except with tape drives. To use standard input or output,
set the filename to a dash (-).

Basic Commands and Directory Hierarchy 39

40

Chapter 2

Unpacking .tar Files
To unpack a .tar file with tar use the x flag:

$ tar xvf archive.tar

In this command, the x flag puts tar into extract (unpack) mode. You can
extract individual parts of the archive by entering the names of the parts
at the end of the command line, but you must know their exact names. (To
find out for sure, see the table-of-contents mode described next.)

When using extract mode, remember that tar does not remove the archived .tar file
after extracting its contents.

Using Table-of-Contents Mode

Before unpacking, it’s usually a good idea to check the contents of a .tar
file with the table-of-contents mode by using the t flag instead of the x flag.
This mode verifies the archive’s basic integrity and prints the names of all
files inside. If you don’t test an archive before unpacking it, you can end
up dumping a huge mess of files into the current directory, which can be
really difficult to clean up.

When you check an archive with the t mode, verify that everything is
in a rational directory structure; that is, all file pathnames in the archive
should start with the same directory. If you're unsure, create a temporary
directory, change to it, and then extract. (You can always use mv * .. if the
archive didn’t create a mess.)

When unpacking, consider using the p option to preserve permissions.
Use this in extract mode to override your umask and get the exact permis-
sions specified in the archive. The p option is the default when you’re
working as the superuser. If you’re having trouble with permissions and
ownership when unpacking an archive as the superuser, make sure that
you’re waiting until the command terminates and you get the shell prompt
back. Although you may only want to extract a small part of an archive, tar
must run through the whole thing, and you must not interrupt the process
because it sets the permissions only after checking the entire archive.

Commit all of the tar options and modes in this section to memory. If
you’re having trouble, make some flash cards. This may sound like grade
school, but it’s very important to avoid careless mistakes with this command.

2.18.3 Compressed Archives (.tar.gz)

Many beginners find it confusing that archives are normally found com-
pressed, with filenames ending in .tar.gz. To unpack a compressed archive,
work from the right side to the left; get rid of the .gz first and then worry
about the .tar. For example, these two commands decompress and unpack
<file>.tar.gz:

$ gunzip file.tar.gz
$ tar xvf file.tar

NOTE

When starting out, it’s fine to do this one step at a time, first running
gunzip to decompress and then tar to verify and unpack. To create a com-
pressed archive, do the reverse: run tar first and gzip second. Do this
frequently enough, and you’ll soon memorize how the archiving and com-
pression process works. But even if you don’t do it all that often, you can
see how tiresome all of the typing can become and you’ll start looking for
shortcuts. Let’s take a look at those now.

2.18.4 zcat

The method just shown isn’t the fastest or most efficient way to invoke tar
on a compressed archive, and it wastes disk space and kernel I/O time. A
better way is to combine archival and compression functions with a pipe-
line. For example, this command pipeline unpacks <file>.tar.gz:

$ zcat file.tar.gz | tar xvf -

The zcat command is the same as gunzip -dc. The -d option decom-
presses and the -c option sends the result to standard output (in this case,
to the tar command).

Because it’s so common to use zcat, the version of tar that comes with
Linux has a shortcut. You can use z as an option to automatically invoke
gzip on the archive; this works both for extracting an archive (with the x or
t modes in tar) and creating one (with c). For example, use the following to
verify a compressed archive:

$ tar ztvf file.tar.gz

However, try to remember that you're actually performing two steps
when taking the shortcut.

A .tgz file is the same as a .tar.gz file. The suffix is meant to fit into FAT (MS-DOS-
based) filesystems.

2.18.5 Other Compression Utilities

Two more compression programs are xz and bzip2, whose compressed files
end with .xz and .0z2, respectively. While marginally slower than gzip, these
often compact text files a little more. The decompressing programs to use
are unxz and bunzip2, and the options of both are close enough to their gzip
counterparts that you don’t need to learn anything new.

Most Linux distributions come with zip and unzip programs that are com-
patible with the ZIP archives on Windows systems. They work on the usual
zip files as well as self-extracting archives ending in .exe. But if you encounter
a file that ends in .Z, you have found a relic created by the compress program,
which was once the Unix standard. The gunzip program can unpack these
files, but gzip won’t create them.

Basic Commands and Directory Hierarchy 1

2

2.19

Chapter 2

Linux Directory Hierarchy Essentials

Now that you know how to examine files, change directories, and read man-
ual pages, you're ready to start exploring your system files and directories.
The details of the Linux directory structure are outlined in the Filesystem
Hierarchy Standard, or FHS (https://refspecs.linuxfoundation.org/fhs.shiml), but
a brief walkthrough should suffice for now.

Figure 2-2 offers a simplified overview of the hierarchy, showing some
of the directories under / /usr; and /var. Notice that the directory structure
under /usr contains some of the same directory names as /.

|bin/| | man/| | /ib/| |Iocal/| | sbin/| |share/|

Figure 2-2: Linux directory hierarchy

Here are the most important subdirectories in root:

/bin Contains ready-to-run programs (also known as executables),
including most of the basic Unix commands such as 1s and cp. Most of
the programs in /bin are in binary format, having been created by a C
compiler, but some are shell scripts in modern systems.

/dev Contains device files. You’ll learn more about these in Chapter 3.

/etc This core system configuration directory (pronounced EHT-see)
contains the user password, boot, device, networking, and other setup
files.

/home Holds home (personal) directories for regular users. Most Unix
installations conform to this standard.

/lib An abbreviation for library, this directory holds library files con-
taining code that executables can use. There are two types of libraries:
static and shared. The /lib directory should contain only shared librar-
ies, but other lib directories, such as /usy/lib, contain both varieties

as well as other auxiliary files. (We’ll discuss shared libraries in more
detail in Chapter 15.)

/proc Provides system statistics through a browsable directory-and-file
interface. Much of the /proc subdirectory structure on Linux is unique,
but many other Unix variants have similar features. The /proc directory
contains information about currently running processes as well as some
kernel parameters.

/run Contains runtime data specific to the system, including certain
process IDs, socket files, status records, and, in many cases, system log-
ging. This is a relatively recent addition to the root directory; in older
systems, you can find it in /var/run. On newer systems, /var/run is a sym-
bolic link to /run.

/sys This directory is similar to /procin that it provides a device and
system interface. You’ll read more about /sysin Chapter 3.

/sbin The place for system executables. Programs in /sbin directories
relate to system management, so regular users usually do not have /sbin
components in their command paths. Many of the utilities found here
don’t work if not run as root.

/tmp A storage area for smaller, temporary files that you don’t care
much about. Any user may read to and write from /tmp, but the user
may not have permission to access another user’s files there. Many
programs use this directory as a workspace. If something is extremely
important, don’t put it in /tmp because most distributions clear /imp
when the machine boots and some even remove its old files periodi-
cally. Also, don’t let /tmp fill up with garbage because its space is usually
shared with something critical (the rest of /, for example).

/usr Although pronounced “user,” this subdirectory has no user files.
Instead, it contains a large directory hierarchy, including the bulk of
the Linux system. Many of the directory names in /usrare the same as
those in the root directory (like /ust/bin and /usr/lib), and they hold the
same type of files. (The reason that the root directory does not contain
the complete system is primarily historic—in the past, it was to keep
space requirements low for the root.)

/var The variable subdirectory, where programs record information
that can change over the course of time. System logging, user tracking,
caches, and other files that system programs create and manage are
here. (You'll notice a /var/tmp directory here, but the system doesn’t
wipe it on boot.)

2.19.1 Other Root Subdirectories

There are a few other interesting subdirectories in the root directory:

/boot Contains kernel boot loader files. These files pertain only to

the very first stage of the Linux startup procedure, so you won'’t find
information about how Linux starts up its services in this directory.

See Chapter 5 for more about this.

/media A base attachment point for removable media such as flash
drives that is found in many distributions.

/opt This may contain additional third-party software. Many systems
don’t use /opt.

Basic Commands and Directory Hierarchy 43

44

2.20

Chapter 2

2.19.2 The /usr Directory

The /usrdirectory may look relatively clean at first glance, but a quick look
at /usr/bin and /usr/lib reveals that there’s a lot here; /usris where most of
the user-space programs and data reside. In addition to /ust/bin, /usr/sbin,
and /usr/lib, /usr contains the following:

/include Holds header files used by the C compiler.

/local Is where administrators can install their own software. Its struc-
ture should look like that of /and /usr.

/man Contains manual pages.

/share Contains files that should work on other kinds of Unix machines
with no loss of functionality. These are usually auxiliary data files that
programs and libraries read as necessary. In the past, networks of
machines would share this directory from a file server, but today a share
directory used in this manner is rare because there are no realistic space
restraints for these kinds of files on contemporary systems. Instead, on
Linux distributions, you’ll find /man, /info, and many other subdirecto-
ries here because it is an easily understood convention.

2.19.3 Kernel Location

On Linux systems, the kernel is normally a binary file /omlinuz or /boot/
vmlinuz. A boot loaderloads this file into memory and sets it in motion when
the system boots. (You’ll find details on the boot loader in Chapter 5.)
Once the boot loader starts the kernel, the main kernel file is no longer
used by the running system. However, you’ll find many modules that the
kernel loads and unloads on demand during the course of normal system
operation. Called loadable kernel modules, they are located under /lib/modules.

Running Commands as the Superuser

Before going any further, you should learn how to run commands as the
superuser. You may be tempted to start a root shell, but doing so has many
disadvantages:

¢ You have no record of system-altering commands.

® You have no record of the users who performed system-altering
commands.

¢ You don’t have access to your normal shell environment.

e You have to enter the root password (if you have one).

2.20.1 sudo

Most distributions use a package called sudo to allow administrators to run
commands as root when they are logged in as themselves. For example, in
Chapter 7, you’ll learn about using vipw to edit the /et¢/passwd file. You could
do it like this:

$ sudo vipw

When you run this command, sudo logs this action with the syslog ser-
vice under the local?2 facility. You’ll also learn more about system logs in
Chapter 7.

2.20.2 /etc/sudoers

Of course, the system doesn’t let just any user run commands as the super-
user; you must configure the privileged users in your /etc/sudoers file. The
sudo package has many options (that you’ll probably never use), which
makes the syntax in /etc/sudoers somewhat complicated. For example, this
file gives user1 and user2 the power to run any command as root without
having to enter a password:

User_Alias ADMINS = useri, user2
ADMINS ALL = NOPASSWD: ALL

root ALL=(ALL) ALL

The first line defines an ADMINS user alias with the two users, and the
second line grants the privileges. The ALL = NOPASSWD: ALL part means that
the users in the ADMINS alias can use sudo to execute commands as root. The
second ALL means “any command.” The first ALL means “any host.” (If you
have more than one machine, you can set different kinds of access for each
machine or group of machines, but we won’t cover that feature.)

The root ALL=(ALL) ALL simply means that the superuser may also use
sudo to run any command on any host. The extra (ALL) means that the
superuser may also run commands as any other user. You can extend this
privilege to the ADMINS users by adding (ALL) to the second /etc/sudoers line, as
shown here:

ADMINS ALL = (ALL) NOPASSWD: ALL

Use the visudo command to edit /etc/sudoers. This command checks for file syntax
errors after you save the file.

Basic Commands and Directory Hierarchy 45

46

2.21

Chapter 2

2.20.3 sudo Logs

Although we’ll go into logs in more detail later in the book, you can find
the sudo logs on most systems with this command:

$ journalctl SYSLOG_IDENTIFIER=sudo

On older systems, you’ll need to look for a logfile in /var/log, such as
Jvar/log/auth.log:

That’s it for sudo for now. If you need to use its more advanced features,
see the sudoers(5) and sudo(8) manual pages. (The actual mechanics of
user switching are covered in Chapter 7.)

Looking Forward

You should now know how to do the following at the command line: run
programs, redirect output, interact with files and directories, view process
listings, view manual pages, and generally make your way around the user
space of a Linux system. You should also be able to run commands as the
superuser. You may not yet know much about the internal details of user-
space components or what goes on in the kernel, but with the basics of files
and processes under your belt, you're on your way. In the next few chapters,
you’ll be working with both kernel and user-space system components using
the command-line tools that you just learned.

DEVICES

This chapter is a basic tour of the ker-
nel-provided device infrastructure in a

functioning Linux system. Throughout

the history of Linux, there have been many
changes to how the kernel presents devices to the
user. We’ll begin by looking at the traditional system
of device files to see how the kernel provides device
configuration information through sysfs. Our goal is
to be able to extract information about the devices
on a system in order to understand a few rudimentary
operations. Later chapters will cover interacting with
specific kinds of devices in greater detail.

48

3.1

Chapter 3

It’s important to understand how the kernel interacts with user space
when presented with new devices. The udev system enables user-space pro-
grams to automatically configure and use new devices. You'll see the basic
workings of how the kernel sends a message to a user-space process through
udev, as well as what the process does with it.

Device Files

It’s easy to manipulate most devices on a Unix system because the kernel
presents many of the device I/O interfaces to user processes as files. These
device files are sometimes called device nodes. Aside from programmers using
regular file operations to work with devices, some devices are also accessible
to standard programs like cat, so you don’t have to be a programmer to use
a device. However, there is a limit to what you can do with a file interface, so
not all devices or device capabilities are accessible with standard file I/O.

Linux uses the same design for device files as do other Unix flavors.
Device files are in the /dev directory, and running ls /dev reveals quite a few
files in /dev. So how do you work with devices?

To get started, consider this command:

$ echo blah blah > /dev/null

Like any other command with redirected output, this sends some stuff
from the standard output to a file. However, the file is /dev/null, a device, so
the kernel bypasses its usual file operations and uses a device driver on data
written to this device. In the case of /dev/null, the kernel simply accepts the
input data and throws it away.

To identify a device and view its permissions, use 1s -1. Here are some
examples:

$1s -1

brw-rw---- 1 root disk 8, 1 Sep 6 08:37 sdai
crw-rw-rw- 1 root root 1, 3 Sep 6 08:37 null
prw-r--r-- 1 root root 0 Mar 3 19:17 fdata

sIw-rw-rw- 1 root root 0 Dec 18 07:43 log

Note the first character of each line (the first character of the file’s
mode). If this character is b, c, p, or s, the file is a device. These letters stand
for block, character, pipe, and socket, respectively:

Block device
Programs access data from a block device in fixed chunks. The sdal in
the preceding example is a disk device, a type of block device. Disks can
be easily split up into blocks of data. Because a block device’s total size
is fixed and easy to index, processes have quick random access to any
block in the device with the help of the kernel.

NOTE

3.2

Character device
Character devices work with data streams. You can only read characters
from or write characters to character devices, as previously demonstrated
with /dev/null. Character devices don’t have a size; when you read from or
write to one, the kernel usually performs a read or write operation on it.
Printers directly attached to your computer are represented by character
devices. It’s important to note that during character device interaction,
the kernel cannot back up and reexamine the data stream after it has
passed data to a device or process.

Pipe device
Named pipes are like character devices, with another process at the other
end of the I/O stream instead of a kernel driver.

Socket device
Sockets are special-purpose interfaces that are frequently used for
interprocess communication. They’re often found outside of the /dev
directory. Socket files represent Unix domain sockets; you’ll learn more
about those in Chapter 10.

In file listings from 1s -1 of block and character devices, the numbers
before the dates are the major and minor device numbers that the kernel
uses to identify the device. Similar devices usually have the same major
number, such as sda3 and sdbl (both of which are hard disk partitions).

Not all devices have device files, because the block and character device 1/0 interfaces
are not appropriate in all cases. For example, network interfaces don’t have device
files. It is theoretically possible to interact with a network interface using a single char-
acter device, but because it would be difficult, the kernel offers other 1/0 interfaces.

The sysfs Device Path

The traditional Unix /dev directory is a convenient way for user processes
to reference and interface with devices supported by the kernel, but it’s also
a very simplistic scheme. The name of the device in /dev tells you a little
about the device, but usually not enough to be helpful. Another problem

is that the kernel assigns devices in the order in which they are found, so a
device may have a different name between reboots.

To provide a uniform view for attached devices based on their actual
hardware attributes, the Linux kernel offers the sysfs interface through a sys-
tem of files and directories. The base path for devices is /sys/devices. For exam-
ple, the SATA hard disk at /dev/sda might have the following path in sysfs:

/sys/devices/pci0000:00/0000:00:17.0/ata3/hosto/target0:0:0/0:0:0:0/block/sda

Devices 49

50

3.3

Chapter 3

As you can see, this path is quite long compared with the /dev/sda file-
name, which is also a directory. But you can’t really compare the two paths
because they have different purposes. The /dev file enables user processes
to use the device, whereas the /sys/devices path is used to view information
and manage the device. If you list the contents of a device path such as the
preceding one, you’ll see something like the following:

alignment_offset discard alignment holders removable size uevent
bdi events inflight ro slaves

capability events_async power sda1 stat

dev events_poll msecs queue sda2 subsystem

device ext_range range sdas trace

The files and subdirectories here are meant to be read primarily by
programs rather than humans, but you can get an idea of what they con-
tain and represent by looking at an example such as the /dev file. Running
cat dev in this directory displays the numbers 8:0, which happen to be the
major and minor device numbers of /dev/sda.

There are a few shortcuts in the /sys directory. For example, /sys/block
should contain all of the block devices available on a system. However,
those are just symbolic links; you’d run 1s -1 /sys/block to reveal the true
sysfs paths.

It can be difficult to find the sysfs location of a device in /dev. Use the
udevadm command as follows to show the path and several other interesting
attributes:

$ udevadm info --query=all --name=/dev/sda

You'll find more details about udevadm and the entire udev system in
Section 3.5.

dd and Devices

The program dd is extremely useful when you are working with block and
character devices. Its sole function is to read from an input file or stream
and write to an output file or stream, possibly doing some encoding conver-
sion on the way. One particularly useful dd feature with respect to block
devices is that you can process a chunk of data in the middle of a file, ignor-
ing what comes before or after.

dd is very powerful, so make sure you know what you’re doing when you run it. It’s
very easy to corrupt files and data on devices by making a careless mistake. It often
helps to write the output to a new file if you’re not sure what it will do.

dd copies data in blocks of a fixed size. Here’s how to use dd with a char-
acter device, utilizing a few common options:

$ dd if=/dev/zero of=new_file bs=1024 count=1

3.4

As you can see, the dd option format differs from the option formats of
most other Unix commands; it’s based on an old IBM Job Control Language
(JCL) style. Rather than use the dash (-) character to signal an option, you
name an option and set its value with the equal (=) sign. The preceding
example copies a single 1,024-byte block from /dev/zero (a continuous stream
of zero bytes) to new_file.

These are the important dd options:

if=file The input file. The default is the standard input.
of=file The output file. The default is the standard output.

bs=size The block size. dd reads and writes this many bytes of data ata
time. To abbreviate large chunks of data, you can use b and k to signify
512 and 1,024 bytes, respectively. Therefore, the preceding example
could read bs=1k instead of bs=1024.

ibs=size, obs=size The input and output block sizes. If you can use the
same block size for both input and output, use the bs option; if not, use
ibs and obs for input and output, respectively.

count=num The total number of blocks to copy. When working with a
huge file—or with a device that supplies an endless stream of data, such
as /dev/zero—you want dd to stop at a fixed point; otherwise, you could
waste a lot of disk space, CPU time, or both. Use count with the skip
parameter to copy a small piece from a large file or device.

skip=num Skip past the first num blocks in the input file or stream, and
do not copy them to the output.

Device Name Summary

It can sometimes be difficult to find the name of a device (for example,
when partitioning a disk). Here are a few ways to find out what it is:

¢ Query udevd using udevadm (see Section 3.5).
e Look for the device in the /sys directory.

¢ Guess the name from the output of the journalctl -k command (which
prints the kernel messages) or the kernel system log (see Section 7.1).
This output might contain a description of the devices on your system.

e For a disk device that is already visible to the system, you can check the
output of the mount command.

e Run cat /proc/devices to see the block and character devices for which
your system currently has drivers. Each line consists of a number and
name. The number is the major number of the device as described in
Section 3.1. If you can guess the device from the name, look in /dev for
the character or block devices with the corresponding major number,
and you’ve found the device files.

Devices 51

52

Chapter 3

Among these methods, only the first is reliable, but it does require
udev. If you get into a situation where udev is not available, try the other
methods but keep in mind that the kernel might not have a device file for
your hardware.

The following sections list the most common Linux devices and their
naming conventions.

3.4.1 Hard Disks: /dev/sd*

Most hard disks attached to current Linux systems correspond to device
names with an sd prefix, such as /dev/sda, /dev/sdb, and so on. These devices
represent entire disks; the kernel makes separate device files, such as /dev/
sdal and /dev/sda2, for the partitions on a disk.

The naming convention requires a little explanation. The sd portion of
the name stands for SCSI disk. Small Computer System Interface (SCSI) was orig-
inally developed as a hardware and protocol standard for communication
between devices such as disks and other peripherals. Although traditional
SCSI hardware isn’t used in most modern machines, the SCSI protocol is
everywhere due to its adaptability. For example, USB storage devices use it
to communicate. The story on SATA (Serial ATA, a common storage bus
on PCs) disks is a little more complicated, but the Linux kernel still uses
SCSI commands at a certain point when talking to them.

To list the SCSI devices on your system, use a utility that walks the
device paths provided by sysfs. One of the most succinct tools is 1sscsi.
Here’s what you can expect when you run it:

$ lsscsi
[0:0:0:0]® disk® ATA WDC WD3200AAJS-2 01.0 /dev/sda®
[2:0:0:0] disk FLASH Drive UT_USB20 0.00 /dev/sdb

The first column @ identifies the address of the device on the system,
the second @ describes what kind of device it is, and the last ® indicates
where to find the device file. Everything else is vendor information.

Linux assigns devices to device files in the order in which its drivers
encounter the devices. So, in the previous example, the kernel found the
disk first and the flash drive second.

Unfortunately, this device assignment scheme has traditionally caused
problems when you are reconfiguring hardware. Say, for example, that you
have a system with three disks: /dev/sda, /dev/sdb, and /dev/sdc. If /dev/sdb
explodes and you must remove it so that the machine can work again, the
former /dev/sdc moves to /dev/sdb, and there’s no longer a /dev/sdc. If you were
referring to the device names directly in the fstab file (see Section 4.2.8),
you’d have to make some changes to that file in order to get things (mostly)
back to normal. To solve this problem, many Linux systems use the
Universally Unique Identifier (UUID; see Section 4.2.4) and/or the Logical
Volume Manager (LVM) stable disk device mapping.

This discussion has barely scratched the surface of how to use disks and
other storage devices on Linux systems. See Chapter 4 for more information
about using disks. Later in this chapter, we’ll examine how SCSI support
works in the Linux kernel.

3.4.2 Virtval Disks: /dev/xvd* /dev/vd*

Some disk devices are optimized for virtual machines such as AWS instances
and VirtualBox. The Xen virtualization system uses the /dev/xvd prefix, and
/dev/vd is a similar type.

3.4.3 Non-Volatile Memory Devices: /dev/nvme*

Some systems now use the Non-Volatile Memory Express (NVMe) interface
to talk to some kinds of solid-state storage. In Linux, these devices show up
at /dev/nuvme*. You can use the nvme list command to get a listing of these
devices on your system.

3.4.4 Device Mapper: /dev/dm-, /dev/mapper/*

A level up from disks and other direct block storage on some systems is
the LVM, which uses a kernel system called the device mapper. If you see
block devices starting with /dev/dm- and symbolic links in /dev/mapper, your
system probably uses it. You’ll learn all about this in Chapter 4.

3.4.5 (D and DVD Drives: /dev/sr*

Linux recognizes most optical storage drives as the SCSI devices /dev/sr0,
/dev/srl, and so on. However, if the drive uses an older interface, it might
show up as a PATA device, as discussed next. The /dev/sr* devices are read
only, and they are used only for reading from discs. For the write and
rewrite capabilities of optical devices, you’ll use the “generic” SCSI devices
such as /dev/sg0.

3.4.6 PATA Hard Disks: /dev/hd*

PATA (Parallel ATA) is an older type of storage bus. The Linux block devices
/dev/hda, /dev/hdb, /dev/hdc, and /dev/hdd are common on older versions of
the Linux kernel and with older hardware. These are fixed assignments
based on the device pairs on interfaces 0 and 1. At times, you might find

a SATA drive recognized as one of these disks. This means that the SATA
drive is running in a compatibility mode, which hinders performance. Check
your BIOS settings to see if you can switch the SATA controller to its native
mode.

3.4.7 Terminals: /dev/tty’, /dev/pts/” and /dev/tty

Terminals are devices for moving characters between a user process and
an I/O device, usually for text output to a terminal screen. The terminal

Devices 53

54

Chapter 3

device interface goes back a long way, to the days when terminals were
typewriter-based devices and many were attached to a single machine.

Most terminals are pseudoterminal devices, emulated terminals that
understand the I/0O features of real terminals. Rather than talk to a real
piece of hardware, the kernel presents the I/O interface to a piece of soft-
ware, such as the shell terminal window that you probably type most of
your commands into.

Two common terminal devices are /dev/ttyl (the first virtual console)
and /dev/pts/0 (the first pseudoterminal device). The /dev/pts directory itself
is a dedicated filesystem.

The /dev/tty device is the controlling terminal of the current process. If
a program is currently reading from and writing to a terminal, this device
is a synonym for that terminal. A process does not need to be attached to a
terminal.

Display Modes and Virtual Consoles

Linux has two primary display modes: text mode and a graphical mode
(Chapter 14 introduces the windowing systems that use this mode). Although
Linux systems traditionally booted in text mode, most distributions now use
kernel parameters and interim graphical display mechanisms (bootsplashes
such as plymouth) to completely hide text mode as the system is booting. In
such cases, the system switches over to full graphics mode near the end of the
boot process.

Linux supports virtual consoles to multiplex the display. Each virtual con-
sole may run in graphics or text mode. When in text mode, you can switch
between consoles with an ALT-function key combination—for example,
ALT-F1 takes you to /dev/ttyl, ALT-F2 goes to /deu/tty2, and so on. Many of
these virtual consoles may be occupied by a getty process running a login
prompt, as described in Section 7.4.

A virtual console used in graphics mode is slightly different. Rather
than getting a virtual console assignment from the init configuration, a
graphical environment takes over a free virtual console unless directed to
use a specific one. For example, if you have getty processes running on ¢yl
and ##y2, a new graphical environment takes over ¢y3. In addition, once in
graphics mode, you must normally press a CTRL-ALT-function key com-
bination to switch to another virtual console instead of the simpler ALT-
function key combination.

The upshot of all of this is that if you want to see your text console after
your system boots, press CTRL-ALT-F1. To return to the graphical envi-
ronment, press ALT-F2, ALT-F3, and so on, until you get to the graphical
environment.

Some distributions use ttyl in graphics mode. In this case, you will need to try other
consoles.

If you run into trouble switching consoles due to a malfunctioning input
mechanism or some other circumstance, you can try to force the system to
change consoles with the chvt command. For example, to switch to ¢fyl, run
the following as root:

chvt 1

3.4.8 Serial Ports: /dev/ttyS”, /dev/ttyUSB’, /dev/ttyACM*

Older RS-232 type and similar serial ports are represented as true terminal
devices. You can’t do much on the command line with serial port devices
because there are too many settings to worry about, such as baud rate and
flow control, but you can use the screen command to connect to a terminal
by adding the device path as an argument. You may need read and write
permission to the device; sometimes you can do this by adding yourself to a
particular group such as dialout.

The port known as COMI1 on Windows is /dev/ttySO; COM2 is /dev/ttySI;
and so on. Plug-in USB serial adapters show up with USB and ACM with the
names /dev/ttyUSBO, /dev/ttyACMO, /dev/ttyUSBI, /dev/ttyACM1, and so on.

Some of the most interesting applications involving serial ports are
microcontroller-based boards that you can plug into your Linux system for
development and testing. For example, you can access the console and read-
eval-print loop of CircuitPython boards through a USB serial interface. All
you need to do is plug one in, look for the device (it’s usually /dev/ttyACMO),
and connect to it with screen.

3.4.9 Parallel Ports: /dev/Ip0 and /dev/Ip]

Representing an interface type that has largely been replaced by USB and
networks, the unidirectional parallel port devices /dev/lp0 and /dev/Ipl
correspond to LPT1: and LPT2: in Windows. You can send files (such as
a file to be printed) directly to a parallel port with the cat command, but
you might need to give the printer an extra form feed or reset afterward.
A print server such as CUPS is much better at handling interaction with a
printer.

The bidirectional parallel ports are /dev/parportOand /dev/parportl.

3.4.10 Avdio Devices: /dev/snd/*, /dev/dsp, /dev/audio, and More

Linux has two sets of audio devices. There are separate devices for the
Advanced Linux Sound Architecture (ALSA) system interface and the
older Open Sound System (OSS). The ALSA devices are in the /dev/snd
directory, but it’s difficult to work with them directly. Linux systems that use
ALSA support OSS backward-compatible devices if the OSS kernel support
is currently loaded.

Devices 55

56

3.5

Chapter 3

Some rudimentary operations are possible with the OSS dsp and audio
devices. For example, the computer plays any WAV file that you send to
/dev/dsp. However, the hardware may not do what you expect due to fre-
quency mismatches. Furthermore, on most systems, the device is often busy
as soon as you log in.

Linux sound is a messy subject due to the many layers involved. We've just talked
about the kernel-level devices, but typically there are user-space servers such as pulse-
audio that manage audio from different sources and act as intermediaries between the
sound devices and other user-space processes.

3.4.11 Device File Creation

On any reasonably recent Linux system, you do not create your own device
files; they’re created by devtmpfs and udev (see Section 3.5). However, it is
instructive to see how to do so, and on a rare occasion, you might need to
create a named pipe or a socket file.

The mknod command creates one device. You must know the device name
as well as its major and minor numbers. For example, creating /dev/sdal is a
matter of using the following command:

mknod /dev/sdai b 8 1

The b 8 1 specifies a block device with a major number 8 and a minor
number 1. For character or named pipe devices, use c or p instead of b (omit
the major and minor numbers for named pipes).

In older versions of Unix and Linux, maintaining the /dev directory
was a challenge. With every significant kernel upgrade or driver addition,
the kernel could support more kinds of devices, meaning that there would
be a new set of major and minor numbers to be assigned to device file-
names. To tackle this maintenance challenge, each system had a MAKEDEV
program in /dev to create groups of devices. When you upgraded your sys-
tem, you would try to find an update to MAKEDEV and then run it in order to
create new devices.

This static system became ungainly, so a replacement was in order. The
first attempt to fix it was devfs, a kernel-space implementation of /dev that
contained all of the devices that the current kernel supported. However,
there were a number of limitations, which led to the development of udev
and devtmpfs.

udev

We’ve already talked about how unnecessary complexity in the kernel is
dangerous because you can too easily introduce system instability. Device
file management is an example: you can create device files in user space, so
why would you do this in the kernel? The Linux kernel can send notifica-
tions to a user-space process called udevd upon detecting a new device on

NOTE

the system (for example, when someone attaches a USB flash drive). This
udevd process could examine the new device’s characteristics, create a
device file, and then perform any device initialization.

You'll almost certainly see udevd running on your system as systemd-udevd because
it’s a part of the startup mechanism youw'll see in Chapter 6.

That was the theory. Unfortunately, there is a problem with this
approach—device files are necessary early in the boot procedure, so udevd
must also start early. But to create device files, udevd cannot depend on
any devices that it is supposed to create, and it needs to perform its initial
startup very quickly so that the rest of the system doesn’t get held up waiting
for udevd to start.

3.5.1 devtmpfs

The devtmpfs filesystem was developed in response to the problem of device
availability during boot (see Section 4.2 for more details on filesystems).
This filesystem is similar to the older devfs support, but simplified. The
kernel creates device files as necessary, but it also notifies udevd that a
new device is available. Upon receiving this signal, udevd does not create
the device files, but it does perform device initialization along with setting
permissions and notifying other processes that new devices are available.
Additionally, it creates a number of symbolic links in /dev to further identify
devices. You can find examples in the directory /dev/disk/by-id, where each
attached disk has one or more entries.

For example, consider the links for a typical disk (attached at /dev/sda)
and its partitions in /dev/disk/by-id:

$ 1s -1 /dev/disk/by-id
lrwxrwxrwx 1 root root 9 Jul 26 10:23 scsi-SATA WDC_WD3200AAJS- WD-WMAV2FU80671 -> ../../sda
lrwxrwxrwx 1 root root 10 Jul 26 10:23 scsi-SATA_WDC_WD3200AAJS-_WD-WMAV2FU80671-part1l ->

../../sda1

lrwxrwxrwx 1 root root 10 Jul 26 10:23 scsi-SATA WDC_WD3200AAJS-_WD-WMAV2FU80671-part2 ->

../../sda2

lrwxrwxrwx 1 root root 10 Jul 26 10:23 scsi-SATA _WDC_WD3200AAJS-_WD-WMAV2FU80671-part5 ->

../../sda5

The udevd process names the links by interface type, and then by
manufacturer and model information, serial number, and partition (if

applicable).

The “tmp” in devtmpfs indicates that the filesystem resides in main memory with
read/write capability by user-space processes; this characteristic enables udevd to cre-
ate these symbolic links. We'll see some more details in Section 4.2.12.

But how does udevd know which symbolic links to create, and how

does it create them? The next section describes how udevd does its work.
However, you don’t need to know any of this or any of the other remaining

Devices 57

58

Chapter 3

material in this chapter to continue on with the book. In fact, if this is your
first time looking at Linux devices, you're highly encouraged to skip to the
next chapter to start learning about how to use disks.

3.5.2 udevd Operation and Configuration

The udevd daemon operates as follows:

1. The kernel sends udevd a notification event, called a uevent, through an
internal network link.

2. udevd loads all of the attributes in the uevent.

3. udevd parses its rules, filters and updates the uevent based on those
rules, and takes actions or sets more attributes accordingly.

An incoming uevent that udevd receives from the kernel might look like
this (you’ll learn how to get this output with the udevadm monitor --property
command in Section 3.5.4):

ACTION=change

DEVNAME=sde
DEVPATH=/devices/pci0000:00/0000:00:1a.0/usb1/1-1/1-1.2/1-1.2:1.0/host4/
target4:0:0/4:0:0:3/block/sde
DEVTYPE=disk

DISK MEDIA CHANGE=1

MAJOR=8

MINOR=64

SEQNUM=2752

SUBSYSTEM=block

UDEV_LOG=3

This particular event is a change to a device. After receiving the uevent,
udevd knows the name of the device, the sysfs device path, and a number of
other attributes associated with the properties; it is now ready to start pro-
cessing rules.

The rules files are in the /lib/udev/rules.d and /etc/udev/rules.d directo-
ries. The rules in /lib are the defaults, and the rules in /etc are overrides.

A full explanation of the rules would be tedious, and you can learn much
more from the udev(7) manual page, but here is some basic information
about how udevd reads them:

udevd reads rules from start to finish of a rules file.

2. After reading a rule and possibly executing its action, udevd continues
reading the current rules file for more applicable rules.

3. There are directives (such as GOT0) to skip over parts of rules files if
necessary. These are usually placed at the top of a rules file to skip
over the entire file if it’s irrelevant to a particular device that udevd
is configuring.

Let’s look at the symbolic links from the /dev/sda example in
Section 3.5.1. Those links were defined by rules in /lib/udev/rules.d/
60-persistent-storage.rules. Inside, you’ll see the following lines:

KERNEL=="sd*[10-9] | sr*", ENV{ID SERIAL}!="?*", SUBSYSTEMS=="scsi", ATTRS{vendor}=="ATA",
IMPORT{program}="ata_id --export $devnode"

ATAPI devices (SPC-3 or later)
KERNEL=="sd*[10-9] | sr*", ENV{ID SERIAL}!="2*", SUBSYSTEMS=="scsi", ATTRS{type}=="5",ATTRS{scsi_
level}=="[6-9]*", IMPORT{program}="ata_id --export $devnode"

These rules match ATA disks and optical media presented through the
kernel’s SCSI subsystem (see Section 3.6). You can see that there are a few
rules to catch different ways the devices may be represented, but the idea
is that udevd will try to match a device starting with sd or sr but without a
number (with the KERNEL=="sd*[!0-9] |sr*" expression), as well as a subsystem
(SUBSYSTEMS=="scsi"), and, finally, some other attributes, depending on the
type of device. If all of those conditional expressions are true in either of
the rules, udevd moves to the next and final expression:

IMPORT{program}="ata id --export $tempnode"

This is not a conditional. Instead, it’s a directive to import variables
from the /lib/udev/ata_id command. If you have such a disk, try it yourself
on the command line. It will look like this:

/lib/udev/ata_id --export /dev/sda

ID_ATA=1

ID TYPE=disk

ID_BUS=ata

ID_MODEL=WDC_WD3200AAJS-22L7A0
ID_MODEL_ENC=WDC\x20WD3200AAJS22L7A0\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20
\x20\x20\x20\x20\x20\x20\x20\x20\x20

ID_REVISION=01.03E10

ID_SERIAL=WDC_WD3200AAJS-22L7A0_WD-WMAV2FU80671

--snip--

The import now sets the environment so that all of the variable names
in this output are set to the values shown. For example, any rule that follows
will now recognize ENV{ID_TYPE} as disk.

In the two rules we’ve seen so far, of particular note is ID_SERIAL. In each
rule, this conditional appears second:

ENV{ID SERIAL}!="?*"

This expression evaluates to true if ID_SERIAL is not set. Therefore, if
ID_SERIAL is set, the conditional is false, the entire current rule does not
apply, and udevd moves to the next rule.

Devices 59

60

Chapter 3

Why is this here? The purpose of these two rules is to run ata_id to find
the serial number of the disk device and then add these attributes to the
current working copy of the uevent. You'll find this general pattern in many
udev rules.

With ENV{ID SERIAL} set, udevd can now evaluate this rule later on in the
rules file, which looks for any attached SCSI disks:

KERNEL=="sd*|sr*|cciss*", ENV{DEVTYPE}=="disk", ENV{ID_
SERTAL}=="2*", SYMLINK+="disk/by-id/$env{ID BUS}-$env{ID SERIAL}"

You can see that this rule requires ENV{ID_SERIAL} to be set, and it has
one directive:

SYMLINK+="disk/by-id/$env{ID BUS}-$env{ID SERIAL}"

This directive tells udevd to add a symbolic link for the incoming
device. So now you know where the device symbolic links came from!

You may be wondering how to tell a conditional expression from a
directive. Conditionals are denoted by two equal signs (==) or a bang equal
(!=), and directives by a single equal sign (=), a plus equal (+=), or a colon
equal (:=).

3.5.3 udevadm

The udevadm program is an administration tool for udevd. You can reload
udevd rules and trigger events, but perhaps the most powerful features of
udevadm are the ability to search for and explore system devices and the
ability to monitor uevents as udevd receives them from the kernel. The
command syntax can be somewhat complicated, though. There are long
and short forms for most options; we’ll use the long ones here.

Let’s start by examining a system device. Returning to the example in
Section 3.5.2, in order to look at all of the udev attributes used and gener-
ated in conjunction with the rules for a device such as /dev/sda, run the fol-
lowing command:

$ udevadm info --query=all --name=/dev/sda

The output looks like this:

/devices/pci0000:00/0000:00:1f.2/hosto/target0:0:0/0:0:0:0/block/sda

sda

disk/by-id/ata-WDC_WD3200AAJS-22L7A0_WD-WMAV2FU80671
disk/by-id/scsi-SATA_WDC_WD3200AAJS- WD-WMAV2FU80671
disk/by-id/wwn-0x50014ee057faef84
disk/by-path/pci-0000:00:1f.2-scsi-0:0:0:0

E: DEVLINKS=/dev/disk/by-id/ata-WDC_WD3200AAJS-22L7A0_WD-WMAV2FU80671 /dev/
disk/by-id/scsi

-SATA_WDC_WD3200AAJS-_WD-WMAV2FU80671 /dev/disk/by-id/wwn-0x50014ee057faef84 /
dev/disk/by

-path/pci-0000:00:1f.2-scsi-0:0:0:0

E: DEVNAME=/dev/sda

nwunumvoun=2"o

E: DEVPATH=/devices/pci0000:00/0000:00:1f.2/host0/target0:0:0/0:0:0:0/block/
sda

E: DEVTYPE=disk

E: ID _ATA-1

E: ID ATA DOWNLOAD MICROCODE=1

E: ID ATA FEATURE SET AAM=1

--snip--

The prefix in each line indicates an attribute or other characteristic of
the device. In this case, the P: at the top is the sysfs device path, the N: is the
device node (that is, the name given to the /dev file), S: indicates a symbolic
link to the device node that udevd placed in /dev according to its rules, and
E: is additional device information extracted in the udevd rules. (There was
far more output in this example than was necessary to show here; try the
command for yourself to get a feel for what it does.)

3.5.4 Device Monitoring

To monitor uevents with udevadm, use the monitor command:

$ udevadm monitor

Output (for example, when you insert a flash media device) looks like
this abbreviated sample:

KERNEL[658299.569485] add /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2 (usb)
KERNEL[658299.569667] add /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0 (usb)
KERNEL[658299.570614] add /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0/host15
(scsi)

KERNEL[658299.570645] add /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0/
host15/scsi_host/host15 (scsi_host)

UDEV [658299.622579] add /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2 (usb)

UDEV [658299.623014] add /devices/pcio000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0 (usb)
UDEV [658299.623673] add /devices/pcio000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0/host15
(scsi)

UDEV [658299.623690] add /devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0/
host15/scsi_host/host15 (scsi_host)

--snip--

There are two copies of each message in this output because the default
behavior is to print both the incoming message from the kernel (marked
with KERNEL) and the processing messages from udevd. To see only kernel
events, add the --kernel option, and to see only udevd processing events, use
--udev. To see the whole incoming uevent, including the attributes as shown
in Section 3.5.2, use the --property option. The --udev and --property options
together show the uevent after processing.

You can also filter events by subsystem. For example, to see only kernel
messages pertaining to changes in the SCSI subsystem, use this command:

$ udevadm monitor --kernel --subsystem-match=scsi

For more on udevadm, see the udevadm(8) manual page.

Devices 61

62

3.6

Chapter 3

There’s much more to udev. For example, there’s a daemon called
udisksd that listens for events in order to automatically attach disks and to
notify other processes that new disks are available.

In-Depth: SCSI and the Linux Kernel

In this section, we’ll take a look at the SCSI support in the Linux kernel as
a way to explore part of the Linux kernel architecture. You don’t need to
know any of this information in order to use disks, so if you're in a hurry
to use one, move on to Chapter 4. In addition, the material here is more
advanced and theoretical in nature that what you’ve seen so far, so if you
want to stay hands-on, you should definitely skip to the next chapter.

Let’s begin with a little background. The traditional SCSI hardware
setup is a host adapter linked with a chain of devices over an SCSI bus, as
shown in Figure 3-1. The host adapter is attached to a computer. The host
adapter and devices each have an SCSI ID, and there can be 8 or 16 IDs per
bus, depending on the SCSI version. Some administrators might use the
term SCSI target to refer to a device and its SCSI ID because one end of a
session in the SCSI protocol is called the target.

Computer
SCSI Host Adapter Disk Disk CD/DVD
D7 ID 1 IDO ID 4

Figure 3-1: SCSI bus with host adapter and devices

SCSI Bus

Any device can communicate with another through the SCSI command
set in a peer-to-peer relationship. The computer is not directly attached to
the device chain, so it must go through the host adapter in order to com-
municate with disks and other devices. Typically, the computer sends SCSI
commands to the host adapter to relay to the devices, and the devices relay
responses back through the host adapter.

Newer versions of SCSI, such as Serial Attached SCSI (SAS), offer
exceptional performance, but you probably won’t find true SCSI devices in
most machines. You’ll more often encounter USB storage devices that use
SCSI commands. In addition, devices supporting ATAPI (such as CD/DVD-
ROM drives) use a version of the SCSI command set.

SATA disks also appear on your system as SCSI devices, but they are
slightly different because most of them communicate through a transla-
tion layer in the libata library (see Section 3.6.2). Some SATA controllers
(especially high-performance RAID controllers) perform this translation
in hardware.

How does this all fit together? Consider the devices shown on the fol-
lowing system:

$ lsscsi

[0:0:0:0] disk ATA WDC WD3200AAJS-2 01.0 /dev/sda
[1:0:0:0] cd/dvd Slimtype DVD A DS8A5SH XA15 /dev/sro
[2:0:0:0] disk USB2.0 CardReader CF 0100 /dev/sdb
[2:0:0:1] disk USB2.0 CardReader SM XD 0100 /dev/sdc
[2:0:0:2] disk USB2.0 CardReader MS 0100 /dev/sdd
[2:0:0:3] disk USB2.0 CardReader SD 0100 /dev/sde
[3:0:0:0] disk FLASH Drive UT USB20 0.00 /dev/sdf

The numbers in square brackets are, from left to right, the SCSI host
adapter number, the SCSI bus number, the device SCSI ID, and the LUN
(logical unit number, a further subdivision of a device). In this example,
there are four attached adapters (scsi0, scsil, scsi2, and scsi3), each of
which has a single bus (all with bus number 0), and just one device on each
bus (all with target 0). The USB card reader at 2:0:0 has four logical units,
though—one for each kind of flash card that can be inserted. The kernel
has assigned a different device file to each logical unit.

Despite not being SCSI devices, NVMe devices can sometimes show up
in the 1sscsi output with an N as the adapter number.

If you want to try 1sscsi for yourself, you may need to install it as an additional

package.

Figure 3-2 illustrates the driver and interface hierarchy inside the kernel
for this particular system configuration, from the individual device drivers
up to the block drivers. It does not include the SCSI generic (sg) drivers.

Although this is a large structure and may look overwhelming at first,
the data flow in the figure is very linear. Let’s begin dissecting it by looking
at the SCSI subsystem and its three layers of drivers:

e The top layer handles operations for a class of device. For example, the
sd (SCSI disk) driver is at this layer; it knows how to translate requests
from the kernel block device interface into disk-specific commands in
the SCSI protocol, and vice versa.

e The middle layer moderates and routes the SCSI messages between
the top and bottom layers, and keeps track of all of the SCSI buses and
devices attached to the system.

e The bottom layer handles hardware-specific actions. The drivers
here send outgoing SCSI protocol messages to specific host adapters
or hardware, and they extract incoming messages from the hardware.
The reason for this separation from the top layer is that although
SCSI messages are uniform for a device class (such as the disk class),
different kinds of host adapters have varying procedures for sending
the same messages.

Devices 63

64

Chapter 3

Linux Kernel

Block Device Interface (/dev/sda, /dev/sr0, etc.)

Disk Driver (sd)

A
Y

7N
SCSI Subsystem / \

CD/DVD Driver (sr)

A

\

SCSI Protocol and Host Management

A

\/
USB Storage Bridge

A

Y

libata translator

A

Y

SATA Host Driver

\

USB Subsystem

USB Storage Driver

USB Host Driver

£\
/X

/ \

Hardware { \

7\

SATA Disk

CD/DVD

USB Flash

Figure 3-2: Linux SCSI subsystem schematic

The top and bottom layers contain many different drivers, but it’s
important to remember that, for any given device file on your system, the
kernel (nearly always) uses one top-layer driver and one lower-layer driver.
For the disk at /dev/sda in our example, the kernel uses the sd top-layer

driver and the ATA bridge lower-layer driver.

USB Card Reader
Drive (CF, xD, MS, SD)

There are times when you might use more than one upper-layer driver
for one hardware device (see Section 3.6.3). For true hardware SCSI devices,
such as a disk attached to an SCSI host adapter or a hardware RAID control-
ler, the lower-layer drivers talk directly to the hardware below. However, for
most hardware that you find attached to the SCSI subsystem, it’s a different
story.

3.6.1 USB Storage and SCSI

In order for the SCSI subsystem to talk to common USB storage hardware,
as shown in Figure 3-2, the kernel needs more than just a lower-layer SCSI
driver. A USB flash drive represented by /dev/sdf understands SCSI com-
mands, but to actually communicate with the drive, the kernel needs to
know how to talk through the USB system.

In the abstract, USB is quite similar to SCSI—it has device classes,
buses, and host controllers. Therefore, it should be no surprise that the
Linux kernel includes a three-layer USB subsystem that closely resembles
the SCSI subsystem, with device-class drivers at the top, a bus management
core in the middle, and host controller drivers at the bottom. Much as the
SCSI subsystem passes SCSI commands between its components, the USB
subsystem passes USB messages between its components. There’s even an
lsusb command that is similar to 1sscsi.

The part we're really interested in here is the USB storage driver at the
top. This driver acts as a translator. On one end, the driver speaks SCSI,
and on the other, it speaks USB. Because the storage hardware includes
SCSI commands inside its USB messages, the driver has a relatively easy job:
it mostly repackages data.

With both the SCSI and USB subsystems in place, you have almost
everything you need to talk to the flash drive. The final missing link is the
lower-layer driver in the SCSI subsystem because the USB storage driver is a
part of the USB subsystem, not the SCSI subsystem. (For organizational rea-
sons, the two subsystems should not share a driver.) To get the subsystems to
talk to one another, a simple, lower-layer SCSI bridge driver connects to the
USB subsystem’s storage driver.

3.6.2 SCSI and ATA

The SATA hard disk and optical drive shown in Figure 3-2 both use the
same SATA interface. To connect the SATA-specific drivers of the kernel
to the SCSI subsystem, the kernel employs a bridge driver, as with the USB
drives, but with a different mechanism and additional complications. The
optical drive speaks ATAPI, a version of SCSI commands encoded in the
ATA protocol. However, the hard disk does not use ATAPI and does not
encode any SCSI commands!

The Linux kernel uses part of a library called libata to reconcile SATA
(and ATA) drives with the SCSI subsystem. For the ATAPI-speaking opti-
cal drives, this is a relatively simple task of packaging and extracting SCSI

Devices 65

66

Chapter 3

commands into and from the ATA protocol. But for the hard disk, the task
is much more complicated because the library must do a full command
translation.

The job of the optical drive is similar to typing an English book into a
computer. You don’t need to understand what the book is about in order to
do this job, nor do you even need to understand English. But the task for
the hard disk is more like reading a German book and typing it into the
computer as an English translation. In this case, you need to understand
both languages as well as the book’s content.

Despite this difficulty, libata performs this task and makes it possible to
attach ATA/SATA interfaces and devices to the SCSI subsystem. (There are
typically more drivers involved than just the one SATA host driver shown in
Figure 3-2, but they’re not shown for the sake of simplicity.)

3.6.3 Generic SCSI Devices

When a user-space process communicates with the SCSI subsystem, it nor-
mally does so through the block device layer and/or another other kernel
service that sits on top of an SCSI device class driver (like sd or s7). In other
words, most user processes never need to know anything about SCSI devices
or their commands.

However, user processes can bypass device class drivers and give SCSI
protocol commands directly to devices through their generic devices. For
example, consider the system described in Section 3.6, but this time, take a
look at what happens when you add the -g option to 1sscsi in order to show
the generic devices:

$ lsscsi -g

[0:0:0:0] disk ATA WDC WD3200AAJS-2 01.0 /dev/sda @ /dev/sgo
[1:0:0:0] cd/dvd Slimtype DVD A DS8A5SH XA15 /dev/sr0 /dev/sgl
[2:0:0:0] disk USB2.0 CardReader CF 0100 /dev/sdb /dev/sg2
[2:0:0:1] disk USB2.0 CardReader SM XD 0100 /dev/sdc /dev/sg3
[2:0:0:2] disk USB2.0 CardReader MS 0100 /dev/sdd /dev/sg4
[2:0:0:3] disk USB2.0 CardReader SD 0100 /dev/sde /dev/sg5
[3:0:0:0] disk FLASH Drive UT_USB20 0.00 /dev/sdf /dev/sgb

In addition to the usual block device file, each entry lists an SCSI
generic device file in the last column @. For example, the generic device for
the optical drive at /dev/srO1is /dev/sgl.

Why would you want to use a generic device? The answer has to do with
the complexity of code in the kernel. As tasks get more complicated, it’s bet-
ter to leave them out of the kernel. Consider CD/DVD writing and reading.
Reading an optical disc is a fairly simple operation, and there’s a special-
ized kernel driver for it.

However, writing an optical disc is significantly more difficult than
reading, and no critical system services depend on the action of writing.
There’s no reason to threaten kernel space with this activity. Therefore, to
write to an optical disc in Linux, you run a user-space program that talks to
a generic SCSI device, such as /dev/sgl. This program might be a little more
inefficient than a kernel driver, but it’s far easier to build and maintain.

3.6.4 Multiple Access Methods for a Single Device

The two points of access (srand sg) for an optical drive from user space are
illustrated for the Linux SCSI subsystem in Figure 3-3 (any drivers below
the SCSI lower layer have been omitted). Process A reads from the drive
using the srdriver, and process B writes to the drive with the sg driver.
However, processes like these would not normally run simultaneously to
access the same device.

User Process A User Process B
(reads from drive) (writes discs)

A A

Linux Kernel
|

Block Device Interface

A

SCSI Subsystem
\i

CD/DVD Diriver (sr) Generic Driver (sg)
A

A

\ \/

SCSI Protocol and Host Management

A A

\ \/

Lowerlayer Driver

A

\

Optical Drive Hardware

Figure 3-3: Optical device driver schematic

In Figure 3-3, process A reads from the block device. But do user pro-
cesses really read data this way? Normally, the answer is no, not directly.
There are more layers on top of the block devices and even more points of
access for hard disks, as you’ll learn in the next chapter.

Devices 67

DISKS AND FILESYSTEMS

In Chapter 3, we saw an overview of some
of the top-level disk devices that the kernel
makes available. In this chapter, we’ll discuss

in detail how to work with disks on a Linux
system. You’ll learn how to partition disks, create and
maintain the filesystems that go inside disk partitions,

and work with swap space.

Recall that disk devices have names like /dev/sda, the first SCSI subsystem
disk. This kind of block device represents the entire disk, but there are many
different components and layers inside a disk.

Figure 4-1 illustrates a schematic of a simple Linux disk (note that the
figure is not to scale). As you progress through this chapter, you’ll learn
where each piece fits in.

70

NOTE

Chapter 4

Partition Table

Partition Partition

| Filesystem Data Structures

Y

File Data

Figure 4-1: Typical Linux disk schematic

Partitions are subdivisions of the whole disk. On Linux, they’re denoted
with a number after the whole block device, so they have names like /dev/sdal
and /dev/sdb3. The kernel presents each partition as a block device, just as
it would an entire disk. Partitions are defined on a small area of the disk
called a partition table (also called a disk label).

Multiple data partitions were once common on systems with large disks because older
PCs could boot only from certain parts of the disk. Also, administrators used parti-
tions to reserve a certain amount of space for operating system areas; for example,
they didn’t want users to be able to fill up the entire system and prevent critical ser-
vices from working. This practice is not unique to Unix; yow'll still find many new
Windows systems with several partitions on a single disk. In addition, most systems
have a separate swap partition.

The kernel makes it possible for you to access both an entire disk and one
of its partitions at the same time, but you wouldn’t normally do so unless you
were copying the entire disk.

The Linux Logical Volume Manager (LVM) adds more flexibility to tradi-
tional disk devices and partitions, and is now in use in many systems. We’ll
cover LVM in Section 4.4.

The next layer up from the partition is the filesystem, the database of
files and directories that you’re accustomed to interacting with in user
space. We’ll explore filesystems in Section 4.2.

As you can see in Figure 4-1, if you want to access the data in a file,
you need to use the appropriate partition location from the partition
table and then search the filesystem database on that partition for the
desired file data.

To access data on a disk, the Linux kernel uses the system of layers
shown in Figure 4-2. The SCSI subsystem and everything else described in
Section 3.6 are represented by a single box. Notice that you can work with
the disk through the filesystem as well as directly through the disk devices.
You'll see how both methods work in this chapter. To make things simpler,
LVM is not represented in Figure 4-2, but it has components in the block
device interface and a few management components in user space.

To get a handle on how everything fits together, let’s start at the bottom
with partitions.

User Processes

linox Kernel - { TR
System Calls - »-| Device Files (nodes)
A A
|
Filesystem

\ \

Block Device Interface and Partition Mapping

A A

\i
SCSI Subsystem and Other Drivers

Y

A

\

Storage Device

Figure 4-2: Kernel schematic for disk access

Disks and Filesystems 71

72

4.1

NOTE

Partitioning Disk Devices

There are many kinds of partition tables. There’s nothing special about a
partition table—it’s just a bunch of data that says how the blocks on the disk
are divided.

The traditional table, dating back to the PC days, is the one found inside
the Master Boot Record (MBR), and it has many limitations. Most newer systems
use the Globally Unique Identifier Partition Table (GPT).

Here are a few of the many Linux partitioning tools:

parted (“partition editor”) A text-based tool that supports both MBR
and GPT.

gparted A graphical version of parted.

fdisk The traditional text-based Linux disk partitioning tool. Recent
versions of fdisk support the MBR, GPT, and many other kinds of parti-
tion tables, but older versions were limited to MBR support.

Because it has supported both the MBR and GPT for some time, and
it’s easy to run single commands to get partition labels, we’ll use parted
to display partition tables. However, when creating and altering partition
tables, we’ll use fdisk. This will illustrate both interfaces, and why many
people prefer the fdisk interface due to its interactive nature and the fact
that it doesn’t make any changes to the disk until you've had a chance to
review them (we’ll discuss this shortly).

There’s a critical difference between partitioning and filesystem manipulation: the
partition table defines simple boundaries on the disk, whereas a filesystem is a much
more involved data system. For this reason, we’ll use separate tools for partitioning
and creating filesystems (see Section 4.2.2).

4.1.1 Viewing a Partition Table

You can view your system’s partition table with parted -1. This sample output
shows two disk devices with two different kinds of partition tables:

parted -1

Model: ATA KINGSTON SM2280S (scsi)

Disk /dev/sda: 240GB

Sector size (logical/physical): 512B/512B
Partition Table: msdos

Disk Flags:

Number Start End Size Type File system Flags
1 1049kB 223GB 223GB primary ext4 boot
2 223GB 240GB 17.0GB extended
5 223GB 240GB 17.0GB logical linux-swap(v1)

Model: Generic Flash Disk (scsi)

® Disk /dev/sdf: 4284MB

Chapter 4

Sector size (logical/physical): 512B/512B
Partition Table: gpt

Disk Flags:

Number Start End Size File system Name Flags
1 1049kB 1050MB 1049MB myfirst
2 1050MB 4284MB 3235MB mysecond

The first device (/dev/sda) ® uses the traditional MBR partition table
(which parted calls msdos), and the second (/dev/sdf) @ contains a GPT.
Notice that the two table types store different sets of parameters. In particu-
lar, the MBR table has no Name column because names don’t exist under that
scheme. (I arbitrarily chose the names myfirst and mysecond in the GPT.)

Watch out for the unit sizes when reading partition tables. The parted output shows
an approximated size based on what parted thinks is easiest to read. On the other
hand, fdisk -1 shows an exact number, but in most cases, the units are 512-byte
“sectors,” which can be confusing because it might look like you’ve doubled the actual
sizes of your disk and partitions. A close look at the fdisk partition table view also
reveals the sector size information.

MBR Basics

The MBR table in this example contains primary, extended, and logical
partitions. A primary partition is a normal subdivision of the disk; partition
1 is an example. The basic MBR has a limit of four primary partitions, so
if you want more than four, you must designate one as an extended partition.
An extended partition breaks down into logical partitions, which the operat-
ing system can then use as it would any other partition. In this example,
partition 2 is an extended partition that contains logical partition 5.

The filesystem type that parted lists is not necessarily the same as the system ID field
wn its MBR entries. The MBR system ID is just a number identifying the partition type;
for example, 83 is a Linux partition and 82 is a Linux swap partition. However,
parted attempts to be more informative by determining on its own what kind of filesys-
tem is on that partition. If you absolutely must know the system ID for an MBR, use
fdisk -1.

LVM Partitions: A Sneak Peek

When viewing your partition table, if you see partitions labeled as LVM
(code 8e as the partition type), devices named /dev/dm-*, or references to the
“device mapper,” then your system uses LVM. Our discussion will start with
traditional direct disk partitioning, which will look slightly different from
what’s on a system using LVM.

Disks and Filesystems 73

Just so you know what to expect, let’s take a quick look at some sample
parted -1 output on a system with LVM (a fresh installation of Ubuntu using
LVM on VirtualBox). First, there’s a description of the actual partition
table, which looks mostly as you’d expect, except for the lvm flag:

Model: ATA VBOX HARDDISK (scsi)

Disk /dev/sda: 10.7GB

Sector size (logical/physical): 512B/512B
Partition Table: msdos

Disk Flags:

Number Start End Size Type File system Flags
1 1049kB 10.7GB 10.7GB primary boot, lvm

Then there are some devices that look like they should be partitions,
but are called disks:

Model: Linux device-mapper (linear) (dm)
Disk /dev/mapper/ubuntu--vg-swap_1: 1023MB
Sector size (logical/physical): 512B/512B
Partition Table: loop

Disk Flags:

Number Start End Size File system Flags
1 0.00B 1023MB 1023MB linux-swap(vi)

Model: Linux device-mapper (linear) (dm)
Disk /dev/mapper/ubuntu--vg-root: 9672MB
Sector size (logical/physical): 512B/512B
Partition Table: loop

Disk Flags:

Number Start End Size File system Flags
1 0.00B 9672MB 9672MB ext4

A simple way to think about this is that the partitions have been some-
how separated from the partition table. You’ll see what’s actually going on
in Section 4.4.

You'll get much less detailed output with fdisk -1; in the preceding case, you won’t
see anything beyond one LVM-labeled physical partition.

Initial Kernel Read

When initially reading the MBR table, the Linux kernel produces debug-
ging output like this (remember that you can view this with journalctl -k):

sda: sdal sda2 < sda5 >

74 Chapter 4

The sda2 < sda5 > portion of the output indicates that /dev/sda2 is an
extended partition containing one logical partition, /dev/sda>. You’ll nor-
mally ignore the extended partition itself because you typically care only
about accessing the logical partitions it contains.

4.1.2 Modifying Partition Tables

Viewing partition tables is a relatively simple and harmless operation.
Altering partition tables is also relatively easy, but making this kind of
change to the disk involves risks. Keep the following in mind:

e Changing the partition table makes it quite difficult to recover any data
on partitions that you delete or redefine, because doing so can erase
the location of the filesystems on those partitions. Make sure you have
a backup if the disk you’re partitioning contains critical data.

e Ensure that no partitions on your target disk are currently in use. This
is a concern because most Linux distributions automatically mount
any detected filesystem. (See Section 4.2.3 for more on mounting and
unmounting.)

When you’re ready, choose your partitioning program. If you’d like to
use parted, you can use the command-line parted utility or a graphical inter-
face, such as gparted; fdisk is fairly easy to work with on the command line.
These utilities all have online help and are easy to learn. (Try using them
on a flash device or something similar if you don’t have any spare disks.)

That said, there is a major difference in the way that fdisk and parted
work. With fdisk, you design your new partition table before making
the actual changes to the disk, and it makes the changes only when you
exit the program. But with parted, partitions are created, modified, and
removed as you issue the commands. You don’t get the chance to review the
partition table before you change it.

These differences are also key to understanding how the two utilities
interact with the kernel. Both fdisk and parted modify the partitions entirely
in user space; there’s no need to provide kernel support for rewriting a par-
tition table, because user space can read and modify all of a block device.

At some point, though, the kernel must read the partition table in
order to present the partitions as block devices so you can use them. The
fdisk utility uses a relatively simple method. After modifying the partition
table, fdisk issues a single system call to tell the kernel that it should reread
the disk’s partition table (you’ll see an example of how to interact with fdisk
shortly). The kernel then generates debugging output, which you can view
with journalctl -k. For example, if you create two partitions on /dev/sdf,
you’ll see this:

sdf: sdf1 sdf2

Disks and Filesystems 75

The parted tools do not use this disk-wide system call; instead, they sig-
nal the kernel when individual partitions are altered. After processing a
single partition change, the kernel does not produce the preceding debug-
ging output.

There are a few ways to see the partition changes:

e Use udevadm to watch the kernel event changes. For example, the com-
mand udevadm monitor --kernel will show the old partition devices being
removed and the new ones being added.

e Check /proc/partitions for full partition information.

e Check /sys/block/device/ for altered partition system interfaces or /dev for
altered partition devices.

FORCING A PARTITION TABLE RELOAD

If you absolutely must confirm your modifications to a partition table, you can
use the blockdev command to perform the old-style system call that fdisk issues.
For example, to force the kernel to reload the partition table on /dev/sdf, run this:

blockdev --rereadpt /dev/sdf

4.1.3 Creating a Partition Table

Let’s apply everything you just learned by creating a new partition table on
a new, empty disk. This example shows the following scenario:

e 4GB disk (a small USB flash device, unused; if you want to follow this
example, use any size device that you have at hand)

e MBR-style partition table

e Two partitions intended to be populated with an ext4 filesystem:
200MB and 3.8GB

e Disk device at /dev/sdd; you’ll need to find your own device location
with 1sblk

You'll use fdisk to do the work. Recall that this is an interactive com-
mand, so after ensuring that nothing on the disk is mounted, you’ll start at
the command prompt with the device name:

fdisk /dev/sdd

You’ll get an introductory message and then a command prompt like this:

Command (m for help):

76 Chapter 4

First, print the current table with the p command (fdisk commands are
rather terse). Your interaction will probably look something like this:

Command (m for help): p

Disk /dev/sdd: 4 GiB, 4284481536 bytes, 8368128 sectors
Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos

Disk identifier: 0x88f290cc

Device Boot Start End Sectors Size Id Type
/dev/sdd1 2048 8368127 8366080 4G ¢ W95 FAT32 (LBA)

Most devices already contain one FAT-style partition, like this one at
/dev/sdd]. Because you want to create new partitions for Linux (and, of
course, you're sure you don’t need anything here), you can delete the exist-
ing ones like so:

Command (m for help): d
Selected partition 1
Partition 1 has been deleted.

Remember that fdisk doesn’t make changes until you explicitly write
the partition table, so you haven’t yet modified the disk. If you make a mis-
take you can’t recover from, use the g command to quit fdisk without writ-
ing the changes.

Now you’ll create the first 200MB partition with the n command:

Command (m for help): n
Partition type
p primary (0 primary, 0 extended, 4 free)
e extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-8368127, default 2048): 2048
Last sector, +sectors or +size{K,M,G,T,P} (2048-8368127, default 8368127): +200M

Created a new partition 1 of type 'Linux' and of size 200 MiB.

Here, fdisk prompts you for the MBR partition style, the partition num-
ber, the start of the partition, and its end (or size). The default values are
quite often what you want. The only thing changed here is the partition
end/size with the + syntax to specify a size and unit.

Creating the second partition works the same way, except you’ll use all
default values, so we won’t go over that. When you’re finished laying out the
partitions, use the p (print) command to review:

Command (m for help): p

[--snip--]
Device Boot Start End Sectors Size Id Type
/dev/sdd1 2048 411647 409600 200M 83 Linux

Disks and Filesystems 77

78

Chapter 4

/dev/sdd2 411648 8368127 7956480 3.8G 83 Linux

When you're ready to write the partition table, use the w command:

Command (m for help): w

The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

Note that fdisk doesn’t ask you if you're sure as a safety measure; it sim-
ply does its work and exits.

If you're interested in additional diagnostic messages, use journalctl -k
to see the kernel read messages mentioned earlier, but remember that you’ll
get them only if you’re using fdisk.

At this point, you have all the basics to start partitioning disks, but
if you’d like more details about disks, read on. Otherwise, skip ahead to
Section 4.2 to learn about putting a filesystem on the disk.

4.1.4 Navigating Disk and Partition Geometry

Any device with moving parts introduces complexity into a software system
because there are physical elements that resist abstraction. A hard disk is no
exception; even though you can think of a hard disk as a block device with
random access to any block, there can be serious performance consequences
if the system isn’t careful about how it lays out data on the disk. Consider the
physical properties of the simple single-platter disk illustrated in Figure 4-3.

Cylinder
Head
Spindle o)
Arm
Platter

Figure 4-3: Top-down view of a hard disk

The disk consists of a spinning platter on a spindle, with a head
attached to a moving arm that can sweep across the radius of the disk.
As the disk spins underneath the head, the head reads data. When the
arm is in one position, the head can read data only from a fixed circle.
This circle is called a cylinder because larger disks have more than one

platter, all stacked and spinning around the same spindle. Each platter

can have one or two heads, for the top and/or bottom of the platter, and

all heads are attached to the same arm and move in concert. Because the
arm moves, there are many cylinders on the disk, from small ones around
the center to large ones around the periphery of the disk. Finally, you can
divide a cylinder into slices called sectors. This way of thinking about the
disk geometry is called CHS, for cylinder-head-sector; in older systems, you
could find any part of the disk by addressing it with these three parameters.

A track s the part of a cylinder that a single head accesses, so in Figure 4-3, the cyl-
inder is also a track. You don’t need to worry about tracks.

The kernel and the various partitioning programs can tell you what
a disk reports as its number of cylinders. However, on any halfway recent
hard disk, the reported values are fiction! The traditional addressing scheme
that uses CHS doesn’t scale with modern disk hardware, nor does it account
for the fact that you can put more data into outer cylinders than inner cyl-
inders. Disk hardware supports Logical Block Addressing (LBA) to address a
location on the disk by a block number (this is a much more straightforward
interface), but remnants of CHS remain. For example, the MBR partition
table contains CHS information as well as LBA equivalents, and some boot
loaders are still dumb enough to believe the CHS values (don’t worry—most
Linux boot loaders use the LBA values).

The word sector is confusing, because Linux partitioning programs can use it to
mean a different value.

ARE CYLINDER BOUNDARIES IMPORTANT?

The idea of cylinders was once critical to partitioning because cylinders are
ideal boundaries for partitions. Reading a data stream from a cylinder is very
fast because the head can continuously pick up data as the disk spins. A parti-
tion arranged as a set of adjacent cylinders also allows for fast continuous data
access because the head doesn’t need to move very far between cylinders.

Although disks look roughly the same as they always have, the notion of
precise partition alignment has become obsolete. Some older partitioning pro-
grams complain if you don't place your partitions precisely on cylinder bound-
aries. Ignore this; there's little you can do, because the reported CHS values of
modern disks simply aren'’t frue. The disk’s LBA scheme, along with better logic
in newer partitioning utilities, ensures that your partitions are laid out in a rea-
sonable manner.

Disks and Filesystems 79

80

4.2

Chapter 4

4.1.5 Reading from Solid-State Disks

Storage devices with no moving parts, such as solid-state disks (SSDs), are
radically different from spinning disks in terms of their access character-
istics. For these, random access isn’t a problem because there’s no head to
sweep across a platter, but certain characteristics can change how an SSD
performs.

One of the most significant factors affecting the performance of SSDs is
partition alignment. When you read data from an SSD, you read it in chunks
(called pages, not to be confused with virtual memory pages)—such as 4,096
or 8,192 bytes at a time—and the read must begin at a multiple of that size.
This means that if your partition and its data do not lie on a boundary, you
may have to do two reads instead of one for small, common operations,
such as reading the contents of a directory.

Reasonably new versions of partitioning utilities include logic to put
newly created partitions at the proper offsets from the beginning of the
disks, so you probably don’t need to worry about improper partition align-
ment. Partitioning tools currently don’t make any calculations; instead, they
just align partitions on 1MB boundaries or, more precisely, 2,048 512-byte
blocks. This is a rather conservative approach because the boundary aligns
with page sizes of 4,096, 8,192, and so on, all the way up to 1,048,576.

However, if you're curious or want to make sure that your partitions
begin on a boundary, you can easily find this information in the /sys/block
directory. Here’s an example for the partition /dev/sdf2:

$ cat /sys/block/sdf/sdf2/start
1953126

The output here is the partition’s offset from the start of the device, in
units of 512 bytes (again, confusingly called sectors by the Linux system). If
this SSD uses 4,096-byte pages, there are eight of these sectors in a page.
All you need to do is see if you can evenly divide the partition offset by 8. In
this case, you can’t, so the partition would not attain optimal performance.

Filesystems

The last link between the kernel and user space for disks is typically the
filesystem; this is what you’re accustomed to interacting with when you run
commands like 1s and cd. As previously mentioned, the filesystem is a form
of database; it supplies the structure to transform a simple block device
into the sophisticated hierarchy of files and subdirectories that users can
understand.

At one time, all filesystems resided on disks and other physical media
that were intended exclusively for data storage. However, the tree-like direc-
tory structure and I/0O interface of filesystems are quite versatile, so filesystems
now perform a variety of tasks, such as the system interfaces that you see in
/sys and /proc. Filesystems are traditionally implemented in the kernel, but

the innovation of 9P from Plan 9 (https://en.wikipedia.org/wiki/9P_(protocol))
has inspired the development of user-space filesystems. The File System in User
Space (FUSE) feature allows user-space filesystems in Linux.

The Virtual File System (VES) abstraction layer completes the filesystem
implementation. Much as the SCSI subsystem standardizes communication
between different device types and kernel control commands, VFS ensures
that all filesystem implementations support a standard interface so that
user-space applications access files and directories in the same manner.
VES support has enabled Linux to support an extraordinarily large number
of filesystems.

4.2.1 Filesystem Types

Linux filesystem support includes native designs optimized for Linux; foreign
types, such as the Windows FAT family; universal filesystems, like ISO 9660;
and many others. The following list includes the most common types of
filesystems for data storage. The type names as recognized by Linux are in
parentheses next to the filesystem names.

e The Fourth Extended filesystem (ext4) is the current iteration of a line of
filesystems native to Linux. The Second Extended filesystem (ext2) was a
longtime default for Linux systems inspired by traditional Unix file-
systems, such as the Unix File System (UFS) and the Fast File System
(FFS). The Third Extended filesystem (ext3) added a journal feature (a
small cache outside the normal filesystem data structure) to enhance
data integrity and hasten booting. The ext4 filesystem is an incremen-
tal improvement and supports larger files than ext2 or ext3 as well as a
greater number of subdirectories.

There’s a certain amount of backward compatibility in the extended
filesystem series. For example, you can mount ext2 and ext3 filesystems
as each other, and you can mount ext2 and ext3 filesystems as ext4, but
you cannot mount ext4 as ext2 or ext3.

e Burfs, or B-lree filesystem (btrfs), is a newer filesystem native to Linux
designed to scale beyond the capabilities of ext4.

e [AT filesystems (msdos, vfat, exfat) pertain to Microsoft systems. The
simple msdos type supports the very primitive monocase variety in
MS-DOS systems. Most removable flash media, such as SD cards and
USB drives, contain vfat (up to 4GB) or exfat (4GB and up) partitions
by default. Windows systems can use either a FAT-based filesystem or
the more advanced NT File System (ntfs).

e XFSis a high-performance filesystem used by default by some distribu-
tions, such as Red Hat Enterprise Linux 7.0 and beyond.

e HFS+ (hfsplus) is an Apple standard used on most Macintosh systems.

e ISO 9660 (is09660) is a CD-ROM standard. Most CD-ROMs use some
variety of the ISO 9660 standard.

Disks and Filesystems 81

https://en.wikipedia.org/wiki/9P_(protocol)

82

Chapter 4

LINUX FILESYSTEM EVOLUTION

The Extended filesystem series has long been perfectly acceptable to most
users, and the fact that it has remained the de facto standard for so long is a
testament to its utility, but also to its adaptability. The Linux development com-
munity has a tendency to completely replace components that don’t meet cur-
rent needs, but every time the Extended filesystem has come up short, someone
has upgraded it in response. Nonetheless, many advances have been made in
filesystem technology that even ext4 cannot utilize due to the backward-compat-
ibility requirement. These advances are primarily in scalability enhancements
pertaining to very large numbers of files, large files, and similar scenarios.

At the time of this writing, Birfs is the default for one major Linux distribu-
tion. If this proves a success, it's likely that Birfs will be poised to replace the
Extended series.

4.2.2 (Creating a Filesystem

If you're preparing a new storage device, once you're finished with the parti-
tioning process described in Section 4.1, you're ready to create a filesystem.
As with partitioning, you’ll do this in user space because a user-space pro-
cess can directly access and manipulate a block device.

The mkfs utility can create many kinds of filesystems. For example, you
can create an ext4 partition on /dev/sdf2 with this command:

mkfs -t ext4 /dev/sdf2

The mkfs program automatically determines the number of blocks in
a device and sets some reasonable defaults. Unless you really know what
you’re doing and feel like reading the documentation in detail, don’t
change them.

When you create a filesystem, mkfs prints diagnostic output as it works,
including output pertaining to the superblock. The superblock is a key com-
ponent at the top level of the filesystem database, and it’s so important that
mkfs creates a number of backups in case the original is destroyed. Consider
recording a few of the superblock backup numbers when mkfs runs, in
case you need to recover the superblock in the event of a disk failure (see
Section 4.2.11).

Filesystem creation is a task that you should perform only after adding a new disk or
repartitioning an old one. You should create a filesystem just once for each new parti-
tion that has no preexisting data (or that has data you want to remove). Creating a
new filesystem on top of an existing filesystem will effectively destroy the old data.

WHAT IS MKFS?

It turns out that mkfs is only a frontend for a series of filesystem creation pro-
grams, mkfs.fs, where fs is a filesystem type. So when you run mkfs -t ext4,
mkfs in turn runs mkfs.ext4.

And there's even more indirection. Inspect the mkfs.* files behind the com-
mands, and you'll see the following:

$ 1s -1 /sbin/mkfs.*
-ITWXT-Xr-X 1 root root 17896 Mar 29 21:49 /sbin/mkfs.bfs

-YWXT-Xr-X 1 root root 30280 Mar 29 21:49 /sbin/mkfs.cramfs

lrwxrwxrwx 1 root root 6 Mar 30 13:25 /sbin/mkfs.ext2 -> mke2fs
lrwxrwxrwx 1 root root 6 Mar 30 13:25 /sbin/mkfs.ext3 -> mke2fs
lrwxrwxrwx 1 root root 6 Mar 30 13:25 /sbin/mkfs.ext4 -> mke2fs
lrwxrwxrwx 1 root root 6 Mar 30 13:25 /sbin/mkfs.ext4dev -> mke2fs
-TWXT-Xr-X 1 root root 26200 Mar 29 21:49 /sbin/mkfs.minix

lrwxrwxrwx 1 root root 7 Dec 19 2011 /sbin/mkfs.msdos -> mkdosfs
lrwxrwxrwx 1 root root 6 Mar 5 2012 /sbin/mkfs.ntfs -> mkntfs
lrwxrwxrwx 1 root root 7 Dec 19 2011 /sbin/mkfs.vfat -> mkdosfs

As you can see, mkfs.ext4 is just a symbolic link to mke2fs. This is impor-
tant to remember if you run across a system without a specific mkfs command or
when you're looking up the documentation for a particular filesystem. Each file-
system'’s creation utility has its own manual page, like mke2fs(8). This shouldn’t
be a problem on most systems, because accessing the mkfs.ext4(8) manual
page should redirect you to the mke2fs(8) manual page, but keep it in mind.

4.2.3 Mounting a Filesystem

On Unix, the process of attaching a filesystem to a running system is called
mounting. When the system boots, the kernel reads some configuration data
and mounts root (/) based on the configuration data.

In order to mount a filesystem, you must know the following:

e The filesystem’s device, location, or identifier (such as a disk partition—
where the actual filesystem data resides). Some special-purpose filesys-
tems, such as proc and sysfs, don’t have locations.

e The filesystem type.

e The mount point—the place in the current system’s directory hierarchy
where the filesystem will be attached. The mount point is always a nor-
mal directory. For instance, you could use /music as a mount point for
a filesystem containing music. The mount point need not be directly
below /; it can be anywhere on the system.

Disks and Filesystems 83

84

Chapter 4

The common terminology for mounting a filesystem is “mount a device
on a mount point.” To learn the current filesystem status of your system, you
run mount. The output (which can be quite lengthy) should look like this:

$ mount

/dev/sdal on / type ext4 (rw,errors=remount-ro)

proc on /proc type proc (rw,noexec,nosuid,nodev)

sysfs on /sys type sysfs (rw,noexec,nosuid,nodev)

fusectl on /sys/fs/fuse/connections type fusectl (rw)

debugfs on /sys/kernel/debug type debugfs (rw)

securityfs on /sys/kernel/security type securityfs (rw)

udev on /dev type devtmpfs (rw,mode=0755)

devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620)
tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755)
--snip--

Each line corresponds to one currently mounted filesystem, with items
in this order:

1. The device, such as /dev/sda3. Notice that some of these aren’t real
devices (proc, for example) but are stand-ins for real device names
because these special-purpose filesystems do not need devices.

The word on.

The mount point.

The word type.

The filesystem type, usually in the form of a short identifier.

S Otk N

Mount options (in parentheses). See Section 4.2.6 for more details.

To mount a filesystem manually, use the mount command as follows with
the filesystem type, device, and desired mount point:

mount -t type device mountpoint

For example, to mount the Fourth Extended filesystem found on the
device /dev/sdf2 on /home/extra, use this command:

mount -t ext4 /dev/sdf2 /home/extra

You normally don’t need to supply the -t type option because mount usu-
ally figures it out for you. However, sometimes it’s necessary to distinguish
between two similar types, such as the various FAT-style filesystems.

To unmount (detach) a filesystem, use the umount command as follows:

umount mountpoint

You can also unmount a filesystem with its device instead of its mount
point.

Almost all Linux systems include a temporary mount point, /mnt, which is typically
used for testing. Feel free to use it when experimenting with your system, but if you
intend to mount a filesystem for extended use, find or make another spot.

4.2.4 Filesystem UUID

The method of mounting filesystems discussed in the preceding section
depends on device names. However, device names can change because they
depend on the order in which the kernel finds the devices. To solve this
problem, you can identify and mount filesystems by their universally unique
identifier (UUID), an industry standard for unique “serial numbers” to iden-
tify objects in a computer system. Filesystem creation programs like mke2fs
generate a UUID when initializing the filesystem data structure.

To view a list of devices and the corresponding filesystems and UUIDs
on your system, use the blkid (block ID) program:

blkid

/dev/sdf2: UUID="b600fe63-d2e9-461c-a5cd-d3b373a5e1d2" TYPE="ext4"
/dev/sda1: UUID="17f12d53-c3d7-4ab3-943e-a0a72366c9fa" TYPE="ext4"
PARTUUID="c9a5ebbo-01"

/dev/sdas5: UUID="b600fe63-d2e9-461c-a5cd-d3b373a5e1d2" TYPE="swap"
PARTUUID="c9a5ebb0-05"

/dev/sde1: UUID="4859-EFEA" TYPE="vfat"

In this example, blkid found four partitions with data: two with ext4
filesystems, one with a swap space signature (see Section 4.3), and one
with a FAT-based filesystem. The Linux native partitions all have standard
UUIDs, but the FAT partition doesn’t. You can reference the FAT partition
with its FAT volume serial number (in this case, 4859-EFEA).

To mount a filesystem by its UUID, use the UWID mount option. For
example, to mount the first filesystem from the preceding list on /home/
extra, enter:

mount UUID=b600fe63-d2e9-461c-a5cd-d3b373a5e1d2 /home/extra

Typically you won’t manually mount filesystems by UUID like this,
because you normally know the device, and it’s much easier to mount a
device by its name than by its crazy UUID. Still, it’s important to under-
stand UUIDs. For one thing, they’re the preferred way to mount non-LVM
filesystems in /etc/fstab automatically at boot time (see Section 4.2.8). In
addition, many distributions use the UUID as a mount point when you
insert removable media. In the preceding example, the FAT filesystem is on
a flash media card. An Ubuntu system with someone logged in will mount
this partition at /media/user/4859-EFEA upon insertion. The udevd daemon
described in Chapter 3 handles the initial event for the device insertion.

You can change the UUID of a filesystem if necessary (for example, if
you copied the complete filesystem from somewhere else and now need to
distinguish it from the original). See the tune2fs(8) manual page for how to
do this on an ext2/ext3/ext4 filesystem.

Disks and Filesystems 85

86

Chapter 4

4.2.5 Disk Buffering, Caching, and Filesystems

Linux, like other Unix variants, buffers writes to the disk. This means
the kernel usually doesn’t immediately write changes to filesystems when
processes request changes. Instead, it stores those changes in RAM until
the kernel determines a good time to actually write them to the disk. This
buffering system is transparent to the user and provides a very significant
performance gain.

When you unmount a filesystem with umount, the kernel automatically
synchronizes with the disk, writing the changes in its buffer to the disk. You
can also force the kernel to do this at any time by running the sync com-
mand, which by default synchronizes all the disks on the system. If for some
reason you can’t unmount a filesystem before you turn off the system, be
sure to run sync first.

In addition, the kernel uses RAM to cache blocks as they’re read from a
disk. Therefore, if one or more processes repeatedly access a file, the kernel
doesn’t have to go to the disk again and again—it can simply read from the
cache and save time and resources.

4.2.6 Filesystem Mount Options

There are many ways to change the mount command behavior, which you’ll
often need to do when working with removable media or performing system
maintenance. In fact, the total number of mount options is staggering. The
extensive mount(8) manual page is a good reference, but it’s hard to know
where to start and what you can safely ignore. You’ll see the most useful
options in this section.

Options fall into two rough categories: general and filesystem-specific.
General options typically work for all filesystem types and include -t for
specifying the filesystem type, as shown earlier. In contrast, a filesystem-
specific option pertains only to certain filesystem types.

To activate a filesystem option, use the -o switch followed by the option.
For example, -o remount,rw remounts a filesystem already mounted as read-
only in read-write mode.

Short General Options

General options have a short syntax. The most important are:

-r The -r option mounts the filesystem in read-only mode. This has

a number of uses, from write protection to bootstrapping. You don’t
need to specify this option when accessing a read-only device, such as a
CD-ROM; the system will do it for you (and will also tell you about the
read-only status).

-n The -n option ensures that mount does not try to update the system
runtime mount database, /etc/mtab. By default, the mount operation fails
when it cannot write to this file, so this option is important at boot time
because the root partition (including the system mount database) is

read-only at first. You’ll also find this option handy when trying to fix
a system problem in single-user mode, because the system mount data-
base may not be available at the time.

-t The -t type option specifies the filesystem type.

Long Options
Short options like -r are too limited for the ever-increasing number of
mount options; there are too few letters in the alphabet to accommodate all
possible options. Short options are also troublesome because it’s difficult
to determine an option’s meaning based on a single letter. Many general
options and all filesystem-specific options use a longer, more flexible option
format.

To use long options with mount on the command line, start with -o fol-
lowed by the appropriate keywords separated by commas. Here’s a complete
example, with the long options following -o:

mount -t vfat /dev/sde1 /dos -o ro,uid=1000

The two long options here are ro and uid=1000. The ro option specifies
read-only mode and is the same as the -r short option. The uid=1000 option
tells the kernel to treat all files on the filesystem as if user ID 1000 is the
owner.

The most useful long options are these:

exec, noexec Enables or disables execution of programs on the
filesystem.

suid, nosuid Enables or disables setuid programs.

ro Mounts the filesystem in read-only mode (as does the -r short
option).

rw Mounts the filesystem in read-write mode.

There is a difference between Unix and DOS text files, principally in how lines end.
In Unix, only a linefeed (\n, ASCII Ox0A) marks the end of a line, but DOS uses

a carriage return (\r, ASCII OxOD) followed by a linefeed. There have been many
attempts at automatic conversion at the filesystem level, but these are always problem-
atic. Text editors such as vim can automatically detect the newline style of a file and
maintain it appropriately. It’s easier to keep the styles uniform this way.

4.2.7 Remounting a Filesystem

There will be times when you need to change the mount options for a cur-
rently mounted filesystem; the most common situation is when you need to
make a read-only filesystem writable during crash recovery. In that case, you
need to reattach the filesystem at the same mount point.

Disks and Filesystems 87

Chapter 4

The following command remounts the root directory in read-write
mode (you need the -n option because the mount command can’t write to the
system mount database when the root is read-only):

mount -n -o remount /

This command assumes that the correct device listing for /is in /etc/fstab
(as discussed in the next section). If it isn’t, you must specify the device as an
additional option.

4.2.8 The /etc/fstab Filesystem Table

To mount filesystems at boot time and take the drudgery out of the mount
command, Linux systems keep a permanent list of filesystems and options
in Jetc/fstab. This is a plaintext file in a very simple format, as Listing 4-1
shows.

UUID=70ccd6e7-6ae6-446-812c-51aab8036d29 / ext4 errors=remount-ro 0 1
UUID=592dcfd1-58da-4769-9ea8-5f412a896980 none swap sw O O
/dev/sr0 /cdrom is09660 ro,user,nosuid,noauto 0 0

Listing 4-1: List of filesystems and options in /etc/fstab

Each line corresponds to one filesystem and is broken into six fields.
From left to right, these fields are:

The device or UUID Most current Linux systems no longer use the
device in /etc/fstab, preferring the UUID.

The mount point Indicates where to attach the filesystem.

The filesystem type You may not recognize swap in this list; this is a
swap partition (see Section 4.3).

Options Long options, separated by commas.

Backup information for use by the dump command The dump command
is a long-obsolete backup utility; this field is no longer relevant. You
should always set it to 0.

The filesystem integrity test order To ensure that fsck always runs

on the root first, always set this to 1 for the root filesystem and 2 for any
other locally attached filesystems on a hard disk or SSD. Use 0 to disable
the bootup check for every other filesystem, including read-only devices,
swap, and the /proc filesystem (see the fsck command in Section 4.2.11).

When using mount, you can take some shortcuts if the filesystem you
want to work with is in /etc/fstab. For example, if you were using Listing 4-1
and mounting a CD-ROM, you would simply run mount /cdrom.

You can also try to simultaneously mount all entries in /et¢/fstab that do
not contain the noauto option with this command:

mount -a

Listing 4-1 introduces some new options—namely, errors, noauto, and
user, because they don’t apply outside the /etc/fstab file. In addition, you’'ll
often see the defaults option here. These options are defined as follows:

defaults This sets the mount defaults: read-write mode, enable device
files, executables, the setuid bit, and so on. Use this when you don’t
want to give the filesystem any special options but you do want to fill all
fields in /etc/fstab.

errors This ext2/3/4-specific parameter sets the kernel behavior when
the system has trouble mounting a filesystem. The default is normally
errors=continue, meaning that the kernel should return an error code
and keep running. To have the kernel try the mount again in read-only
mode, use errors=remount-ro. The errors=panic setting tells the kernel
(and your system) to halt when there’s a problem with the mount.

noauto This option tells a mount -a command to ignore the entry. Use
this to prevent a boot-time mount of a removable-media device, such as
a flash storage device.

user This option allows unprivileged users to run mount on a particular
entry, which can be handy for allowing certain kinds of access to remov-
able media. Because users can put a setuid-root file on removable media
with another system, this option also sets nosuid, noexec, and nodev (to
bar special device files). Keep in mind that for removable media and
other general cases, this option is now of limited use, because most
systems use ubus along with other mechanisms to automatically mount
inserted media. However, this option can be useful in special cases
when you want to grant control over mounting specific directories.

4.2.9 Alternatives to /etc/fstab

Although the /etc/fstab file has been the traditional way to represent file-
systems and their mount points, there are two alternatives. The first is an
/etc/fstab.d directory, which contains individual filesystem configuration
files (one file for each filesystem). The idea is very similar to many other
configuration directories that you’ll see throughout this book.

A second alternative is to configure systemd units for the filesystems. You’ll
learn more about systemd and its units in Chapter 6. However, the systemd
unit configuration is often generated from (or based on) the /et¢/fstab file, so
you may find some overlap on your system.

4.2.10 Filesystem Capacity

To view the size and utilization of your currently mounted filesystems,
use the df command. The output can be very extensive (and it gets longer
all the time, thanks to specialized filesystems), but it should include infor-
mation on your actual storage devices.

Disks and Filesystems 89

90

NOTE

NOTE

Chapter 4

$ df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda1 214234312 127989560 75339204 63% /
/dev/sdd2 3043836 4632 2864872 1% /media/user/uuid

Here’s a brief description of the fields in the df output:

Filesystem The filesystem device

1K-blocks The total capacity of the filesystem in blocks of 1,024 bytes
Used The number of occupied blocks

Available The number of free blocks

Use% The percentage of blocks in use

Mounted on The mount point

If you’re having trouble finding the correct line in the df output corresponding to a
particular divectory, run the df dir command, where dir is the directory you want to
examine. This limits output to the filesystem for that directory. A very common use is
df ., which limits the output to the device holding your current directory.

It should be easy to see that the two filesystems here are roughly 215GB
and 3GB in size. However, the capacity numbers may look a little strange
because 127,989,560 plus 75,339,204 does not equal 214,234,312, and
127,989,560 is not 63 percent of 214,234,312. In both cases, 5 percent of the
total capacity is unaccounted for. In fact, the space is there, butit’s hidden
in reserved blocks. Only the superuser can use the reserved blocks of the
filesystem when it starts to fill up. This feature keeps system servers from
immediately failing when they run out of disk space.

GETTING A USAGE LISTING

If your disk fills up and you need to know where all of those space-hogging
media files are, use the du command. With no arguments, du prints the disk
usage of every directory in the directory hierarchy, starting at the current work-
ing directory. (That can be a long listing; if you want to see an example, just
run cd /; duto get the idea. Press CTRL-C when you get bored.) The du -s com-
mand turns on summary mode to print only the grand total. To evaluate every-
thing (files and subdirectories) in a particular directory, change to that directory
and run du -s *, keeping in mind that there can be some dot directories that
this command won't catch.

The POSIX standard defines a block size of 512 bytes. However, this size is harder
to read, so by default, the df and du output in most Linux distributions is in
1,024-byte blocks. If you insist on displaying the numbers in 512-byte blocks, set the

POSIXLY CORRECT environment variable. To explicitly specify 1,024-byte blocks, use the
-k option (both utilities support this). The df and du programs also have a -m option
to list capacities in IMB blocks and a -h option to take a best guess at what’s easiest
for a person to read, based on the overall sizes of the filesystems.

4.2.11 Checking and Repairing Filesystems

The optimizations that Unix filesystems offer are made possible by a
sophisticated database mechanism. For filesystems to work seamlessly,
the kernel has to trust that a mounted filesystem has no errors and also
that the hardware stores data reliably. If errors exist, data loss and system
crashes may result.

Aside from hardware problems, filesystem errors are usually due to a user
shutting down the system in a rude way (for example, by pulling out the power
cord). In such cases, the previous filesystem cache in memory may not match
the data on the disk, and the system also may be in the process of altering the
filesystem when you happen to give the computer a kick. Although many file-
systems support journals to make filesystem corruption far less common, you
should always shut down the system properly. Regardless of the filesystem in
use, filesystem checks are still necessary every now and then to make sure that
everything is still in order.

The tool to check a filesystem is fsck. As with the mkfs program, there’s
a different version of fsck for each filesystem type that Linux supports. For
example, when run on an Extended filesystem series (ext2/ext3/ext4), fsck
recognizes the filesystem type and starts the e2fsck utility. Therefore, you
generally don’t need to type e2fsck, unless fsck can’t figure out the filesys-
tem type or youre looking for the e2fsck manual page.

The information presented in this section is specific to the Extended
filesystem series and e2fsck.

To run fsck in interactive manual mode, give the device or the mount
point (as listed in /etc/fstad) as the argument. For example:

fsck /dev/sdb1

Never use fsck on a mounted filesystem—the kernel may alter the disk data as you
run the check, causing runtime mismatches that can crash your system and corrupt
Jiles. There is only one exception: if you mount the root partition read-only in single-
user mode, you may use fsck on it.

In manual mode, fsck prints verbose status reports on its passes, which
should look something like this when there are no problems:

Pass
Pass

: Checking inodes, blocks, and sizes

: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

/dev/sdb1: 11/1976 files (0.0% non-contiguous), 265/7891 blocks

B W N R

Disks and Filesystems 91

92

Chapter 4

If fsck finds a problem in manual mode, it stops and asks a question
relevant to fixing the problem. These questions deal with the internal
structure of the filesystem, such as reconnecting loose inodes and clearing
blocks (inodes are building blocks of the filesystem; you’ll see how they work
in Section 4.6). When fsck asks you about reconnecting an inode, it has
found a file that doesn’t appear to have a name. When reconnecting such
a file, fsck places the file in the lost+found directory in the filesystem, with a
number as the filename. If this happens, you need to guess the name based
on the file’s contents; the original filename is probably gone.

In general, it’s pointless to sit through the fsck repair process if you've
just uncleanly shut down the system, because fsck may have a lot of minor
errors to fix. Fortunately, e2fsck has a -p option that automatically fixes
ordinary problems without asking and aborts when there’s a serious error.
In fact, Linux distributions run a variant of fsck -p at boot time. (You may
also see fsck -a, which does the same thing.)

If you suspect a major disaster on your system, such as a hardware fail-
ure or device misconfiguration, you need to decide on a course of action,
because fsck can really mess up a filesystem that has larger problems. (One
telltale sign that your system has a serious problem is if fsck asks a lot of
questions in manual mode.)

If you think that something really bad has happened, try running fsck -n
to check the filesystem without modifying anything. If there’s a problem with
the device configuration that you think you can fix (such as loose cables or
an incorrect number of blocks in the partition table), fix it before running
fsck for real, or you're likely to lose a lot of data.

If you suspect that only the superblock is corrupt (for example, because
someone wrote to the beginning of the disk partition), you might be able to
recover the filesystem with one of the superblock backups that mkfs creates.
Use fsck -b num to replace the corrupted superblock with an alternate at
block num and hope for the best.

If you don’t know where to find a backup superblock, you might be able
to run mkfs -n on the device to view a list of superblock backup numbers
without destroying your data. (Again, make sure that you're using -n, or you'll
really tear up the filesystem.)

Checking ext3 and ext4 Filesystems

You normally do not need to check ext3 and ext4 filesystems manually
because the journal ensures data integrity (recall that the journalis a small
data cache that has not yet been written to a specific spot in the filesystem).
If you don’t shut your system down cleanly, you can expect the journal to
contain some data. To flush the journal in an ext3 or ext4 filesystem to the
regular filesystem database, run e2fsck as follows:

e2fsck -fy /dev/disk device

However, you may want to mount a broken ext3 or ext4 filesystem in
ext2 mode, because the kernel won’t mount an ext3 or ext4 filesystem with
a nonempty journal.

The Worst Case

Disk problems that are more severe leave you with few choices:

¢ You can try to extract the entire filesystem image from the disk with dd
and transfer it to a partition on another disk of the same size.

e You can try to patch the filesystem as much as possible, mount it in
read-only mode, and salvage what you can.

¢ You can try debugfs.

In the first two cases, you still need to repair the filesystem before you
mount it, unless you feel like picking through the raw data by hand. If you
like, you can choose to answer y to all of the fsck questions by entering
fsck -y, but do this as a last resort because issues may come up during the
repair process that you would rather handle manually.

The debugfs tool allows you to look through the files on a filesystem and
copy them elsewhere. By default, it opens filesystems in read-only mode. If
you'’re recovering data, it’s probably a good idea to keep your files intact to
avoid messing things up further.

Now, if you're really desperate—say with a catastrophic disk failure on
your hands and no backups—there isn’t a lot you can do other than hope a
professional service can “scrape the platters.”

4.2.12 Special-Purpose Filesystems

Not all filesystems represent storage on physical media. Most versions of
Unix have filesystems that serve as system interfaces. That is, rather than
serving only as a means to store data on a device, a filesystem can repre-
sent system information, such as process IDs and kernel diagnostics. This
idea goes back to the /dev mechanism, which is an early model of using
files for I/O interfaces. The /procidea came from the eighth edition of
research Unix, implemented by Tom J. Killian and accelerated when Bell
Labs (including many of the original Unix designers) created Plan 9—
a research operating system that took filesystem abstraction to a whole
new level (https://en.wikipedia.org/wiki/Plan_9_from_DBell_Labs).

Some of the special filesystem types in common use on Linux include:

proc Mounted on /proc. The name proc is an abbreviation for process.
Each numbered directory inside /proc refers to the ID of a current pro-
cess on the system; the files in each directory represent various aspects
of that process. The directory /proc/self represents the current process.
The Linux proc filesystem includes a great deal of additional kernel and
hardware information in files like /proc/cpuinfo. Keep in mind that the
kernel design guidelines recommend moving information unrelated to
processes out of /proc and into /sys, so system information in /proc might
not be the most current interface.

sysfs Mounted on /sys. (You saw this in Chapter 3.)

tmpfs Mounted on /run and other locations. With tmpfs, you can use
your physical memory and swap space as temporary storage. You can

Disks and Filesystems 93

https://en.wikipedia.org/wiki/Plan_9_from_Bell_Labs

94

mount tmpfs where you like, using the size and nr_blocks long options to
control the maximum size. However, be careful not to pour things con-
stantly into a tmpfs location, because your system will eventually run out
of memory and programs will start to crash.

squashfs A type of read-only filesystem where content is stored in a
compressed format and extracted on demand through a loopback
device. One example use is in the snap package management system
that mounts packages under the /snap directory.

overlay A filesystem that merges directories into a composite.
Containers often use overlay filesystems; you’ll see how they work in
Chapter 17.

4.3 Swap Space

Chapter 4

Not every partition on a disk contains a filesystem. It’s also possible to aug-
ment the RAM on a machine with disk space. If you run out of real memory,
the Linux virtual memory system can automatically move pieces of memory
to and from disk storage. This is called swapping because pieces of idle pro-
grams are swapped to the disk in exchange for active pieces residing on the
disk. The disk area used to store memory pages is called swap space (or just
swap).

The free command’s output includes the current swap usage in kilo-
bytes as follows:

$ free

total used free
--snip--
Swap: 514072 189804 324268

4.3.1 Using a Disk Partition as Swap Space

To use an entire disk partition as swap, follow these steps:

Make sure the partition is empty.

2. Run mkswap dev, where dev is the partition’s device. This command puts a
swap signature on the partition, marking it as swap space (rather than a
filesystem or otherwise).

3. Execute swapon dev to register the space with the kernel.

After creating a swap partition, you can put a new swap entry in your
/etc/fstab file to make the system use the swap space as soon as the machine
boots. Here’s a sample entry that uses /dev/sda5 as a swap partition:

/dev/sda5 none swap sw 0 O

Swap signatures have UUIDs, so keep in mind that many systems now
use these instead of raw device names.

4.3.2 Using a File as Swap Space

You can use a regular file as swap space if you're in a situation where you
would be forced to repartition a disk in order to create a swap partition.
You shouldn’t notice any problems when doing this.

Use these commands to create an empty file, initialize it as swap, and
add it to the swap pool:

dd if=/dev/zero of=swap_file bs=1024k count=num_mb
mkswap swap_file
swapon swap_file

Here, swap_file is the name of the new swap file, and num_mb is the
desired size in megabytes.

To remove a swap partition or file from the kernel’s active pool, use the
swapoff command. Your system must have enough free remaining memory
(real and swap combined) to accommodate any active pages in the part of
the swap pool that you’re removing.

4.3.3 Determining How Much Swap You Need

At one time, Unix conventional wisdom said you should always reserve at
least twice as much swap space as you have real memory. Today, not only
do the enormous disk and memory capacities available cloud the issue, but
so do the ways we use the system. On one hand, disk space is so plentiful,
it’s tempting to allocate more than double the memory size. On the other
hand, you may never even dip into your swap space because you have so
much real memory.

The “double the real memory” rule dated from a time when multiple
users would be logged in to one machine. Not all of them would be active,
though, so it was convenient to be able to swap out the memory of the inac-
tive users when an active user needed more memory.

The same may still hold true for a single-user machine. If you’re run-
ning many processes, it’s generally fine to swap out parts of inactive pro-
cesses or even inactive pieces of active processes. However, if you frequently
access swap space because many active processes want to use the memory
at once, you’ll suffer serious performance problems because disk I/O (even
that of SSDs) is just too slow to keep up with the rest of the system. The only
solutions are to buy more memory, terminate some processes, or complain.

Sometimes, the Linux kernel may choose to swap out a process in favor
of a little more disk cache. To prevent this behavior, some administrators
configure certain systems with no swap space at all. For example, high-
performance servers should never dip into swap space and should avoid
disk access if at all possible.

Disks and Filesystems 95

It’s dangerous to configure no swap space on a general-purpose machine. If a machine
completely runs out of both real memory and swap space, the Linux kernel invokes
the out-of-memory (OOM) killer to kill a process in order to free up some memory. You
obviously don’t want this to happen to your desktop applications. On the other hand,
high-performance servers include sophisticated monitoring, redundancy, and load-
balancing systems to ensure that they never reach the danger zone.

You'll learn much more about how the memory system works in Chapter 8.

4.4 The Logical Volume Manager

So far we’ve looked at direct management and use of disks through parti-
tions, specifying the exact locations on storage devices where certain data
should reside. You know that accessing a block device like /dev/sdal leads
you to a place on a particular device according to the partition table on
/dev/sda, even if the exact location may be left to the hardware.

This usually works fine, but it does have some disadvantages, especially
when it comes to making changes to your disks after installation. For exam-
ple, if you want to upgrade a disk, you must install the new disk, partition,
add filesystems, possibly do some boot loader changes and other tasks, and
finally switch over to the new disk. This process can be error-prone and
requires several reboots. It’s perhaps worse when you want to install an
additional disk to get more capacity—here, you have to pick a new mount
point for the filesystem on that disk and hope that you can manually distrib-
ute your data between the old and new disks.

The LVM deals with these problems by adding another layer between
the physical block devices and the filesystem. The idea is that you select a
set of physical volumes (usually just block devices, such as disk partitions) to
include into a volume group, which acts as a sort of generic data pool. Then
you carve logical volumes out of the volume group.

Figure 4-4 shows a schematic of how these fit together for one volume
group. This figure shows several physical and logical volumes, but many
LVM-based systems have only one PV and just two logical volumes (for root

and swap).
Logical volume Logical volume
A
Volume group
Physical volume Physical volume

Figure 4-4: How PVs and logical volumes fit together in a volume group

96 Chapter 4

Logical volumes are just block devices, and they typically contain file-
systems or swap signatures, so you can think of the relationship between a
volume group and its logical volumes as similar to that of a disk and its parti-
tions. The critical difference is that you don’t normally define how the logi-
cal volumes are laid out in the volume group—the LVM works all of this out.

The LVM allows some powerful and extremely useful operations, such as:

e Add more PVs (such as another disk) to a volume group, increasing its size.

e Remove PVs as long as there’s enough space remaining to accommo-
date existing logical volumes inside a volume group.

e Resize logical volumes (and as a consequence, resize filesystems with
the fsadm utility).

You can do all of this without rebooting the machine, and in most cases
without unmounting any filesystems. Although adding new physical disk
hardware can require a shutdown, cloud computing environments often
allow you to add new block storage devices on the fly, making LVM an excel-
lent choice for systems that need this kind of flexibility.

We’re going to explore LVM in a moderate amount of detail. First,
we’ll see how to interact with and manipulate logical volumes and their
components, and then we’ll take a closer look at how LVM works and the
kernel driver that it’s built on. However, the discussion here is not essential
to understanding the rest of the book, so if you get too bogged down, feel
free to skip ahead to Chapter 5.

4.4.2 Working with LVM

LVM has a number of user-space tools for managing volumes and volume
groups. Most of these are based around the lvm command, an interactive
general-purpose tool. There are individual commands (which are just
symbolic links to LVM) to perform specific tasks. For example, the vgs com-
mand has the same effect as typing vgs at the lvm> prompt of the interactive
lvm tool, and you’ll find that vgs (usually in /sbin) is a symbolic link to lum.
We’ll use the individual commands in this book.

In the next few sections, we’ll look at the components of a system that
uses logical volumes. The first examples come from a standard Ubuntu
installation using the LVM partitioning option, so many of the names will
contain the word Ubuntu. However, none of the technical details are spe-
cific to that distribution.

Listing and Understanding Volume Groups

The vgs command just mentioned shows the volume groups currently con-
figured on the system. The output is fairly concise. Here’s what you might
see in our example LVM installation:

vgs
VG #PV #LV #SN Attr VSize VFree
ubuntu-vg 1 2 0 wz--n- <10.00g 36.00m

Disks and Filesystems 97

98

Chapter 4

The first line is a header, with each successive line representing a vol-
ume group. The columns are as follows:

VG The volume group name. ubuntu-vg is the generic name that the
Ubuntu installer assigns when configuring a system with LVM.

#PV The number of physical volumes that the volume group’s storage
comprises.

#LV The number of logical volumes inside the volume group.

#SN The number of logical volume snapshots. We won’t go into detail
about these.

Attr A number of status attributes of the volume group. Here, w (write-
able), z (resizable), and n (normal allocation policy) are active.
vsize The volume group size.

VFree The amount of unallocated space on the volume group.

This synopsis of a volume group is sufficient for most purposes. If you
want to go a little deeper into a volume group, use the vgdisplay command,
which is very useful for understanding a volume group’s properties. Here’s
the same volume group with vgdisplay:

vgdisplay
--- Volume group ---

VG Name ubuntu-vg
System ID

Format T1vm2

Metadata Areas 1

Metadata Sequence No 3

VG Access read/write

VG Status resizable

MAX LV 0

Cur LV 2

Open LV 2

Max PV 0

Cur PV 1

Act PV 1

VG Size <10.00 GiB

PE Size 4.00 MiB

Total PE 2559

Alloc PE / Size 2550 / 9.96 GiB
Free PE / Size 9 / 36.00 MiB
VG UUID 0zs0TV-wnT5-1a0y-vIoh-rUae-YPdv-pPwaAs

You saw some of this before, but there are some new items of note:

Open LV The number of logical volumes currently in use.
Cur PV The number of physical volumes the volume group comprises.
Act LV The number of active physical volumes in the volume group.

VG WID The volume group’s universally unique identifier. It’s possible
to have more than one volume group with the same name on a sys-
tem; in this case, the UUID can help you isolate a particular one. Most

LVM tools (such as vgrename, which can help you resolve a situation like
this) accept the UUID as an alternative to the volume group name. Be
warned that you’re about to see a lot of different UUIDs; every compo-
nent of LVM has one.

A physical extent (abbreviated as PE in the vgdisplay output) is a piece of

a physical volume, much like a block, but on a much larger scale. In this

example, the PE size is 4MB. You can see that most of the PEs on this vol-
ume group are in use, but that’s not a cause for alarm. This is merely the
amount of space on the volume group allocated for the logical partitions

(in this case, a filesystem and swap space); it doesn’t reflect the actual usage

within the filesystem.

Listing Logical Volumes

Similar to volume groups, the commands to list logical volumes are 1lvs for a

short listing and 1lvdisplay for more detail. Here’s a sample of lvs:

lvs
LV Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
root ubuntu-vg -wi-ao---- <9.01g
swap_1 ubuntu-vg -wi-ao---- 976.00m

On basic LVM configurations, only the first four columns are important

to understand, and the remaining columns may be empty, as is the case
here (we won’t cover those). The relevant columns here are:

LV The logical volume name.

VG The volume group where the logical volume resides.

Attr Attributes of the logical volume. Here, they are w (writeable), i

(inherited allocation policy), a (active), and o (open). In more advanced

volume group configurations, more of these slots are active—in par-

ticular, the first, seventh, and ninth.

Lsize The size of the logical volume.

Running the more detailed lvdisplay helps to shed some light on where
a logical volume fits into your system. Here’s the output for one of our logi-

cal volumes:

lvdisplay /dev/ubuntu-vg/root
--- Logical volume ---

LV Path /dev/ubuntu-vg/root

LV Name root

VG Name ubuntu-vg

LV UUID CELZaz-PWr3-tr3z-dA3P-syC7-KWsT-4YiUW2
LV Write Access read/write

LV Creation host, time ubuntu, 2018-11-13 15:48:20 -0500

LV Status available

open 1

LV Size <9.01 GiB

Current LE 2306

Disks and Filesystems

99

100

Chapter 4

Segments 1

Allocation inherit
Read ahead sectors auto

- currently set to 256
Block device 253:0

There is a lot of interesting stuff here, and most of it is fairly self-
explanatory (note that the UUID of the logical volume is different from
that of its volume group). Perhaps the most important thing you haven’t
seen yet is first: LV Path, the device path of the logical volume. Some sys-
tems, but not all, use this as the mount point of the filesystem or swap
space (in a systemd mount unit or /etc/fstab).

Even though you can see the major and minor device numbers of the
logical volume’s block device (here, 253 and 0), as well as something that
looks like a device path, it’s not actually the path that the kernel uses. A
quick look at /dev/ubuntu-vg/root reveals that something else is going on:

$ 1s -1 /dev/ubuntu-vg/root
lrwxrwxrwx 1 root root 7 Nov 14 06:58 /dev/ubuntu-vg/root -> ../dm-0

As you can see, this is just a symbolic link to /dev/dm-0. Let’s look at that
briefly.

Using Logical Volume Devices

Once LVM has done its setup work on your system, logical volume block
devices are available at /dev/dm-0, /dev/dm-1, and so on, and may be arranged
in any order. Due to the unpredictability of these device names, LVM also
creates symbolic links to the devices that have stable names based on the
volume group and logical volume names. You saw this in the preceding sec-
tion with /dev/ubuntu-vg/root.

There’s an additional location for symbolic links in most implementa-
tions: /dev/mapper. The name format here is also based on the volume group
and logical volume, but there’s no directory hierarchy; instead, the links
have names like ubuntu--vg-root. Here, udev has transformed the single dash
in the volume group into a double dash, and then separated the volume
group and logical volume names with a single dash.

Many systems use the links in /dev/mapperin their /etc/fstab, systemd,
and boot loader configurations in order to point the system to the logical
volumes used for filesystems and swap space.

In any case, these symbolic links point to block devices for the logical
volumes, and you can interact with them just as you would any other block
device: create filesystems, create swap partitions, and so on.

If you take a look around /dev/mapper, you'll also see a file named control. You
might be wondering about that file, as well as why the real block device files begin
with dm-; does this coincide with /dev/mapper somehow? We'll address these ques-
tions at the end of this chapter.

Working with Physical Volumes

The final major piece of LVM to examine is the physical volume (PV). A vol-
ume group is built from one or more PVs. Although a PV may seem like a
straightforward part of the LVM system, it contains a little more informa-
tion than meets the eye. Much like volume groups and logical volumes, the
LVM commands to view PVs are pvs (for a short list) and pvdisplay (for a
more in-depth view). Here’s the pvs display for our example system:

pvs
PV VG Fmt Attr PSize PFree
/dev/sdal ubuntu-vg lvm2 a-- <10.00g 36.00m

And here’s pvdisplay:

pvdisplay
--- Physical volume ---

PV Name /dev/sda1

VG Name ubuntu-vg

PV Size <10.00 GiB / not usable 2.00 MiB
Allocatable yes

PE Size 4.00 MiB

Total PE 2559

Free PE 9

Allocated PE 2550

PV UUID v2Qb1A-XC2e-2G41-NdgJ-1nan-rjm5-47eMe5

From the previous discussion of volume groups and logical volumes,
you should understand most of this output. Here are some notes:

e There’s no special name for the PV other than the block device. There’s
no need for one—all of the names required to reference a logical volume
are at the volume group level and above. However, the PV does have a
UUID, which is required to compose a volume group.

e In this case, the number of PEs matches the usage in the volume group
(which we saw earlier), because this is the only PV in the group.

e There’s a tiny amount of space that LVM labels as not usable because
it’s not enough to fill a full PE.

e The ain the attributes of the pvs output corresponds to Allocatable in
the pvdisplay output, and it simply means that if you want to allocate
space for a logical volume in the volume group, LVM can choose to use
this PV. However, in this case, there are only nine unallocated PEs (a
total of 36MB), so not much is available for new logical volumes.

As alluded to earlier, PVs contain more than just information about
their own individual contribution to a volume group. Each PV contains
physical volume metadata, extensive information about its volume group and
its logical volumes. We’ll explore PV metadata shortly, but first let’s get
some hands-on experience to see how what we’ve learned fits together.

Disks and Filesystems 101

102

Chapter 4

Constructing a Logical Volume System

Let’s look at an example of how to create a new volume group and some
logical volumes out of two disk devices. We’ll combine two disk devices of
5GB and 15GB into a volume group and then divide this space into two
logical volumes of 10GB each—a nearly impossible task without LVM. The
example shown here uses VirtualBox disks. Although the capacities are
quite small on any contemporary system, they suffice for illustration.

Figure 4-5 shows the volume schematic. The new disks are at /dev/sdb
and /dev/sdc, the new volume group will be called myvg, and the two new
logical volumes are called mylvi and mylva.

Logical volume: Logical volume:
mylv1l 8(10GB) mylv2 8(10GB)

Volume group: myvg

TN

Physical volume: Physical volume:

/dev/sdb1 (5GB) /dev/sdc1 (15GB)

Figure 4-5: Constructing a logical volume system

The first task is to create a single partition on each of these disks and
label it for LVM. Do this with a partitioning program (see Section 4.1.2),
using the partition type ID 8e, so that the partition tables look like this:

parted /dev/sdb print

Model: ATA VBOX HARDDISK (scsi)

Disk /dev/sdb: 5616MB

Sector size (logical/physical): 512B/512B
Partition Table: msdos

Disk Flags:

Number Start End Size Type File system Flags
1 1049kB 5616MB 5615MB primary lvm

parted /dev/sdc print

Model: ATA VBOX HARDDISK (scsi)

Disk /dev/sdc: 16.0GB

Sector size (logical/physical): 512B/512B

Partition Table: msdos

Disk Flags:

Number Start End Size Type File system Flags
1 1049kB 16.0GB 16.0GB primary lvm

NOTE

NOTE

You don’t necessarily need to partition a disk to make it a PV. PVs can
be any block device, even entire-disk devices, such as /dev/sdb. However,
partitioning enables booting from the disk, and it also provides a means of
identifying the block devices as LVM physical volumes.

Creating Physical Volumes and a Volume Group

With the new partitions of /dev/sdbl and /dev/sdcl in hand, the first step with
LVM is to designate one of the partitions as a PV and assign it to a new vol-
ume group. A single command, vgcreate, performs this task. Here’s how to
create a volume group called myvg with /dev/sdbl as the initial PV:

vgcreate myvg /dev/sdbi
Physical volume "/dev/sdb1" successfully created.
Volume group "myvg" successfully created

You can also create a PV first in a separate step with the pvcreate command.
However, vgcreate performs this step on a partition if nothing is currently present.

At this point, most systems automatically detect the new volume group;
run a command such as vgs to verify (keeping in mind that there may be
existing volume groups on your system that show up in addition to the one
you just created):

vgs
VG #PV #LV #SN Attr VSize VFree
myvg 1 O O wz--n- <5.23g <5.23g

If you don’t see the new volume group, try running pvscan first. If your system doesn’t
automaltically detect changes to LVM, yow'll need to run pvscan every time you make a
change.

Now you can add your second PV at /dev/sdcl to the volume group with
the vgextend command:

vgextend myvg /dev/sdc1
Physical volume "/dev/sdc1" successfully created.
Volume group "myvg" successfully extended

Running vgs now shows two PVs, and the size is that of the two parti-
tions combined:

vgs
VG #PV #LV #SN Attr VSize VFree
my-vg 2 0 0 wz--n- <20.16g <20.16g

Disks and Filesystems 103

104

Chapter 4

Creating Logical Volumes

The final step at the block device level is to create the logical volumes. As
mentioned before, we’re going to create two logical volumes of 10GB each,
but feel free to experiment with other possibilities, such as one big logical
volume or multiple smaller ones.

The lvcreate command allocates a new logical volume in a volume
group. The only real complexities in creating simple logical volumes are
determining the sizes when there is more than one per volume group, and
specifying the type of logical volume. Remember that PVs are divided into
extents; the number of PEs available may not quiteline up with your desired
size. However, it should be close enough so that it doesn’t present a concern,
so if this your first time working with the LVM, you don’t really have to pay
attention to PEs.

When using lvcreate, you can specify a logical volume’s size by numeric
capacity in bytes with the --size option or by number of PEs with the
--extents option.

So, to see how this works, and to complete the LVM schematic in
Figure 4-5, we’ll create logical volumes named mylvi and mylv2 using --size:

lvcreate --size 10g --type linear -n mylvi myvg
Logical volume "mylvi" created.

lvcreate --size 10g --type linear -n mylv2 myvg
Logical volume "mylv2" created.

The type here is the linear mapping, the simplest type when you don’t
need redundancy or any other special features (we won’t work with any
other types in this book). In this case, --type linear is optional because it’s
the default mapping.

After running these commands, verify that the logical volumes exist
with an 1lvs command, and then take a closer look at the current state of the
volume group with vgdisplay:

vgdisplay myvg
--- Volume group ---

VG Name myvg
System ID

Format Tvm2
Metadata Areas 2

Metadata Sequence No 4

VG Access read/write
VG Status resizable
MAX LV 0

Cur LV 2

Open LV 0

Max PV 0

Cur PV 2

Act PV 2

VG Size 20.16 GiB
PE Size 4.00 MiB
Total PE 5162

Alloc PE / Size 5120 / 20.00 GiB

Free PE / Size 42 / 168.00 MiB
VG UUID 1pHrOe-e5zy-TUtK-5gnN-SpDY-shM8-Cbok+f3

Notice how there are 42 free PEs because the sizes that we chose for
the logical volumes didn’t quite take up all of the available extents in the
volume group.

Manipulating Logical Volumes: Creating Partitions

With the new logical volumes available, you can now make use of them by
putting filesystems on the devices and mounting them just like any normal
disk partition. As mentioned earlier, there will be symbolic links to the
devices in /dev/mapper and (for this case) a /dev/myuvg directory for the vol-
ume group. So, for example, you might run the following three commands
to create a filesystem, mount it temporarily, and see how much actual space
you have on a logical volume:

mkfs -t ext4 /dev/mapper/myvg-mylvi
mke2fs 1.44.1 (24-Mar-2018)
Creating filesystem with 2621440 4k blocks and 655360 inodes
Filesystem UUID: 83cc4119-625c-49d1-88c4-e2359a15a887
Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632
Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done
mount /dev/mapper/myvg-mylvi /mnt
df /mnt
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/myvg-mylvl 10255636 36888 9678076 1% /mnt

Removing Logical Volumes

We haven’t yet looked at any operations on the other logical volume, mylv2,
so let’s use it to make this example more interesting. Say you find you’re not
really using that second logical volume. You decide to remove it and resize
the first logical volume to take over the remaining space on the volume
group. Figure 4-6 shows our goal.

Assuming you’ve already moved or backed up anything important on
the logical volume you’re going to delete, and that it’s not in current sys-
tem use (that is, you’ve unmounted it), first remove it with lvremove. When
manipulating logical volumes with this command, you’ll refer to them using
a different syntax—by separating the volume group and logical volume
names by a slash (myvg/mylv2):

lvremove myvg/mylv2
Do you really want to remove and DISCARD active logical volume myvg/mylv2?
[y/n]: y

Logical volume "mylv2" successfully removed

Disks and Filesystems 105

106

Chapter 4

Logical Volume:
mylv1 (20GB)

A

Volume group: myvg

Physical volume: Physical volume:

/dev/sdb1 (5GB) /dev/sdc1 (15GB)

Figure 4-6: Results of reconfiguring logical volumes

Be careful when you run Ivremove. Because you haven’t used this syntax with the
other LVM commands you've seen so far, you might accidentally use a space instead
of the slash. If you make that mistake in this particular case, Ivremove assumes that
you want to remove all of the logical volumes on the volume groups myvg and
mylv2. (You almost certainly don’t have a volume group named mylv2, but that'’s not
your biggest problem at the moment.) So, if you're not paying attention, you could
remove all of the logical volumes on a volume group, not just one.

As you can see from this interaction, lvremove tries to protect you from
blunders by double-checking that you really want to remove each logical vol-
ume targeted for removal. It also won’t try to remove a volume that’s in use.
But don’t just assume that you should reply y to any question you're asked.

Resizing Logical Volumes and Filesystems

Now you can resize the first logical volume, mylvi. You can do this even
when the volume is in use and its filesystem is mounted. However, it’s
important to understand that there are two steps. To use your larger logical
volume, you need to resize both it and the filesystem inside it (which you
can also do while it’s mounted). But because this is such a common opera-
tion, the lvresize command that resizes a logical volume has an option (-r)
to perform the filesystem resizing for you also.

For illustration only, let’s use two separate commands to see how this
works. There are several ways to specify the change in size to a logical vol-
ume, but in this case, the most straightforward method is to add all of the
free PEs in the volume group to the logical volume. Recall that you can find
that number with vgdisplay; in our running example, it’s 2,602. Here’s the
lvresize command to add all of those to mylvi:

lvresize -1 +2602 myvg/mylvi

Size of logical volume myvg/mylvl changed from 10.00 GiB (2560 extents) to
20.16 GiB (5162 extents).

Logical volume myvg/mylvl successfully resized.

Now you need to resize the filesystem inside. You can do this with
the fsadm command. It’s fun to watch it work in verbose mode (use the -v
option):

fsadm -v resize /dev/mapper/myvg-mylvi

fsadm: "ext4" filesystem found on "/dev/mapper/myvg-mylvi".

fsadm: Device "/dev/mapper/myvg-mylvi" size is 21650997248 bytes

fsadm: Parsing tune2fs -1 "/dev/mapper/myvg-mylv1"

fsadm: Resizing filesystem on device "/dev/mapper/myvg-mylvi" to 21650997248
bytes (2621440 -> 5285888 blocks of 4096 bytes)

fsadm: Executing resize2fs /dev/mapper/myvg-mylvl 5285888

resize2fs 1.44.1 (24-Mar-2018)

Filesystem at /dev/mapper/myvg-mylvl is mounted on /mnt; on-line resizing
required

old_desc_blocks = 2, new_desc_blocks = 3

The filesystem on /dev/mapper/myvg-mylvi is now 5285888 (4k) blocks long.

As you can see from the output, fsadm is just a script that knows how to
transform its arguments into the ones used by filesystem-specific tools like
resize2fs. By default, if you don’t specify a size, it’ll simply resize to fit the
entire device.

Now that you've seen the details of resizing volumes, you're probably
looking for shortcuts. The much simpler approach is to use a different syn-
tax for the size and have lvresize perform the partition resizing for you,
with this single command:

lvresize -r -1 +100%FREE myvg/mylvi

It’s rather nice that you can expand an ext2/ext3/ext4 filesystem while
it’s mounted. Unfortunately, it doesn’t work in reverse. You cannot shrink a
filesystem when it’s mounted. Not only must you unmount the filesystem,
but the process of shrinking a logical volume requires you to do the steps
in reverse. So, when resizing manually, you’d need to resize the partition
before the logical volume, making sure that the new logical volume is still
big enough to contain the filesystem. Again, it’s much easier to use lvresize
with the -r option so that it can coordinate the filesystem and logical vol-
ume sizes for you.

4.4.3 The LVM Implementation

With the more practical operational basics of LVM covered, we can now
take a brief look at its implementation. As with almost every other topic in
this book, LVM contains a number of layers and components, with a fairly
careful separation between the parts in kernel and user space.

As you’ll see soon, finding PVs to discover the structure of the volume
groups and logical volumes is somewhat complicated, and the Linux ker-
nel would rather not deal with any of it. There’s no reason for any of this
to happen in kernel space; PVs are just block devices, and user space has
random access to block devices. In fact, LVM (more specifically, LVM2 in
current systems) itself is just the name for a suite of user-space utilities that
know the LVM structure.

Disks and Filesystems 107

108

Chapter 4

On the other hand, the kernel handles the work of routing a request
for a location on a logical volume’s block device to the true location on an
actual device. The driver for this is the device mapper (sometimes shortened
to devmapper), a new layer sandwiched between normal block devices and
the filesystem. As the name suggests, the task the device mapper performs
is like following a map; you can almost think of it as translating a street
address into an absolute location like global latitude/longitude coordi-
nates. (It’s a form of virtualization; the virtual memory we’ll see elsewhere
in the book works on a similar concept.)

There’s some glue between LVM user-space tools and the device mapper:
a few utilities that run in user space to manage the device map in the kernel.
Let’s look at both the LVM side and the kernel side, starting with LVM.

LVM Utilities and Scanning for Physical Volumes

Before it does anything, an LVM utility must first scan the available block
devices to look for PVs. The steps that LVM must perform in user space are
roughly as follows:

Find all of the PVs on the system.

2. Find all of the volume groups that the PVs belong to by UUID (this
information is contained in the PVs).

3. Verify that everything is complete (that is, all necessary PVs that belong
to the volume group are present).
Find all of the logical volumes in the volume groups.

5. Figure out the scheme for mapping data from the PVs to the logical volumes.

There’s a header at the beginning of every PV that identifies the volume
as well as its volume groups and the logical volumes within. The LVM utili-
ties can put this information together and determine whether all PVs neces-
sary for a volume group (and its logical volumes) are present. If everything
checks out, LVM can work on getting the information to the kernel.

If you’re intevested in the appearance of the LVM header on a PV, you can run a com-
mand such as this:

dd if=/dev/sdbl count=1000 | strings | less

In this case, we’re using /dev/sdbl as the PV. Don’t expect the output to be very
pretty, but it does show the information required for LVM.

Any LVM utility, such as pvscan, 1lvs, or vgcreate, is capable of perform-
ing the work of scanning and processing PVs.

The Device Mapper

After LVM has determined the structure of the logical volumes from all of
the headers on the PVs, it communicates with the kernel’s device mapper

NOTE

driver in order to initialize the block devices for the logical volumes and
load their mapping tables. It achieves this with the ioctl(2) system call (a
commonly used kernel interface) on the /dev/mapper/control device file. It’s
not really practical to try to monitor this interaction, but it’s possible to look
at the details of the results with the dnsetup command.

To get an inventory of mapped devices currently serviced by the device
mapper, use dnsetup info. Here’s what you might get for one of the logical
volumes created earlier in this chapter:

dmsetup info

Name: myvg-mylvi
State: ACTIVE
Read Ahead: 256

Tables present: LIVE

Open count: 0

Event number: 0

Major, minor: 253, 1

Number of targets: 2
UUID: LVM-1pHrOee5zyTUtK5gnNSpDYshM8Cbokf30fwX4Tow2XncjGrwet7nwCGhpp71735aQ

The major and minor number of the device correspond to the /dev/dm-*
device file for the mapped device; the major number for this device mapper
is 253. Because the minor number is 1, the device file is named /dev/dm-1.
Notice that the kernel has a name and yet another UUID for the mapped
device. LVM supplied these to the kernel (the kernel UUID is just a concat-
enation of the volume group and logical volume UUIDs).

Remember the symbolic links such as /dev/mapper/myvg-mylvl? udev creates those
in response to new devices from the device mapper, using a rules file like we saw in
Section 3.5.2.

You can also view the table that LVM gave to the device mapper, by issu-
ing the command dmsetup table. Here’s what that looks like for our earlier
example when there were two 10GB logical volumes (mylvi and mylv2) spread
across the two physical volumes of 5GB (/dev/sdbl) and 15GB (/dev/sdcl):

dmsetup table

myvg-mylv2: 0 10960896 linear 8:17 2048
myvg-mylv2: 10960896 10010624 linear 8:33 20973568
myvg-mylvi: 0 20971520 linear 8:33 2048

Each line provides a segment of the map for a given mapped device.
For the device myvg-mylv2, there are two pieces, and for myvg-mylvi, there’s a
single one. The fields after the name, in order, are:

1. The start offset of the mapped device. The units are in 512-byte “sectors,”
or the normal block size that you see in many other devices.

2. The length of this segment.

The mapping scheme. Here, it’s the simple one-to-one linear scheme.

Disks and Filesystems 109

10

Chapter 4

4. The major and minor device number pair of a source device—that is, what

LVM calls physical volumes. Here 8:17 is /dev/sdbl and 8:33 is /dev/sdcl.

5. A starting offset on the source device.

What’s interesting here is that in our example, LVM chose to use the
space in /dev/sdcl for the first logical volume that we created (mylvi). LVM
decided that it wanted to lay out the first 10GB logical volume in a con-
tiguous manner, and the only way to do that was on /dev/sdcl. However,
when creating the second logical volume (mylv2), LVM had no choice but
to spread it into two segments across the two PVs. Figure 4-7 shows the
arrangement.

LV: mylv2 (segment 2)
PV start: 20973568
Length: 10010624 (5GB)

LV: mylv1 (complete)
PV start: 2048
Length: 20971520 (10GB)

LV: mylv2 (segment 1)
PV start: 2048
Length: 10960896 (5GB)

PV 8:17 (/dev/sdb1, 5GB)|| PV 8:33 (/dev/sdc1, 15GB)

Figure 4-7: How LVM arranges mylvi and mylv2

As a further consequence, when we removed mylv2 and expanded mylvi
to fit the remaining space in the volume group, the original start offset in
the PV remained where it was on /dev/sdcl, but everything else changed to
include the remainder of the PVs:

dmsetup table
myvg-mylvi: 0 31326208 linear 8:33 2048
myvg-mylvi: 31326208 10960896 linear 8:17 2048

Figure 4-8 shows the arrangement.

LV: mylv1 (segment 2)
PV start: 2048
Length: 10960896 (5GB)

LV: mylv1 (segment 1)
PV start: 2048
Length: 31326208 (15GB)

PV 8:17 (/dev/sdb1, 5GB)[| PV 8:33 (/dev/sdc1, 15GB)

Figure 4-8: The arrangement after we remove mylv2 and expand mylvi

You can experiment with logical volumes and the device mapper to
your heart’s content with virtual machines and see how the mappings turn
out. Many features, such as software RAID and encrypted disks, are built on
the device mapper.

4.5

4.6

NOTE

Looking Forward: Disks and User Space

In disk-related components on a Unix system, the boundaries between user
space and the kernel can be difficult to characterize. As you've seen, the
kernel handles raw block 1/O from the devices, and user-space tools can
use the block I/O through device files. However, user space typically uses
the block I/O only for initializing operations, such as partitioning, filesys-
tem creation, and swap space creation. In normal use, user space uses only
the filesystem support that the kernel provides on top of the block I1/0.
Similarly, the kernel also handles most of the tedious details when dealing
with swap space in the virtual memory system.

The remainder of this chapter briefly looks at the innards of a Linux
filesystem. This is more advanced material, and you certainly don’t need to
know it to proceed with the book. If this is your first time through, skip to
the next chapter and start learning about how Linux boots.

Inside a Traditional Filesystem

A traditional Unix filesystem has two primary components: a pool of data
blocks where you can store data and a database system that manages the
data pool. The database is centered around the inode data structure. An
inode is a set of data that describes a particular file, including its type, per-
missions, and—perhaps most important—where in the data pool the file
data resides. Inodes are identified by numbers listed in an inode table.

Filenames and directories are also implemented as inodes. A directory
inode contains a list of filenames and links corresponding to other inodes.

To provide a real-life example, I created a new filesystem, mounted it,
and changed the directory to the mount point. Then, I added some files
and directories with these commands:

$ mkdir dir_1

$ mkdir dir 2

$ echo a > dir_1/file 1

$ echo b > dir_1/file 2

$ echo ¢ > dir_1/file_3

$ echo d > dir 2/file 4

$ 1n dir_1/file_3 dir_2/file_5

Note that I created dir_2/file_5 as a hard link to dir_1/file_3, meaning
that these two filenames actually represent the same file (more on this
shortly). Feel free to try this yourself. It doesn’t necessarily need to be on a
new filesystem.

If you were to explore the directories in this filesystem, its contents
would appear as shown in Figure 4-9.

If you try this on your own system, the inode numbers will probably be different, espe-

cially if you run the commands to create the files and directories on an existing filesys-
tem. The specific numbers aren’t important; it’s all about the data that they point to.

Disks and Filesystems m

112

Chapter 4

Y
file_1| |file_2] |file_3|

Figure 4-9: User-level representation of a filesystem

The actual layout of the filesystem as a set of inodes, shown in
Figure 4-10, doesn’t look nearly as clean as the user-level representation.

" b”

u_n

inode table
#/link count/type data pool
2 4 dir \ . inode 2
dir_1 inode 12
12 ’ dir dir_2 inode 7633
13 1 file . inode 12
. inode 2
file_1 inode 13
14 1 file file_2 inode 14
file_3 inode 15
15 2 | file
it
16 1 file
\ . inode 7633
: . inode 2
7633 | 2| dr " | file_4 inode 16
file_5 inode 15

udu

Figure 4-10: Inode structure of the filesystem shown in Figure 4-9

How do we make sense of this? For any ext2/3/4 filesystem, you start
at inode number 2, which is the root inode (try not to confuse this with the
system root filesystem). From the inode table in Figure 4-10, you can see
that this is a directory inode (dir), so you can follow the arrow over to the
data pool, where you see the contents of the root directory: two entries

named dir_1 and dir_2 corresponding to inodes 12 and 7633, respectively.
To explore those entries, go back to the inode table and look at either of
those inodes.

To examine dir_1/file_2in this filesystem, the kernel does the following:

1. Determines the path’s components: a directory named dir_1, followed
by a component named file_2.

2. Follows the root inode to its directory data.

Finds the name dir_I in inode 2’s directory data, which points to inode
number 12.

4. Looks up inode 12 in the inode table and verifies that it is a directory
inode.

5. Follows inode 12’s data link to its directory information (the second box
down in the data pool).

6. Locates the second component of the path (file_2) in inode 12’s direc-
tory data. This entry points to inode number 14.

7. Looks up inode 14 in the directory table. This is a file inode.

At this point, the kernel knows the properties of the file and can open
it by following inode 14’s data link.

This system, of inodes pointing to directory data structures and direc-
tory data structures pointing to inodes, allows you to create the filesystem
hierarchy that youre used to. In addition, notice that the directory inodes
contain entries for . (the current directory) and .. (the parent directory,
except for the root directory). This makes it easy to get a point of reference
and to navigate back down the directory structure.

4.6.1 Inode Details and the Link Count

To view the inode numbers for any directory, use the 1s -i command.
Here’s what you’d get at the root of this example (for more detailed inode
information, use the stat command):

$1s -i
12 dir_1 7633 dir_2

You're probably wondering about the link count in the inode table.
You've already seen the link count in the output of the common 1s -1 com-
mand, but you likely ignored it. How does the link count relate to the files
in Figure 4-9, in particular the “hard-linked” file_5? The link count field is
the number of total directory entries (across all directories) that point to
an inode. Most of the files have a link count of 1 because they occur only
once in the directory entries. This is expected. Most of the time when you
create a file, you create a new directory entry and a new inode to go with it.
However, inode 15 occurs twice. First it’s created as dir_1/file_3, and then
it’s linked to as dir_2/file_5. A hard link is just a manually created entry in a
directory to an inode that already exists. The 1In command (without the -s
option) allows you to create new hard links manually.

Disks and Filesystems 1n3

14

Chapter 4

This is also why removing a file is sometimes called unlinking. If you run
rm dir_1/file_2, the kernel searches for an entry named file_2in inode 12’s
directory entries. Upon finding that file_2 corresponds to inode 14, the ker-
nel removes the directory entry and then subtracts 1 from inode 14’s link
count. As a result, inode 14’s link count will be 0, and the kernel will know
that there are no longer any names linking to the inode. Therefore, it can
now delete the inode and any data associated with it.

However, if you run rm dir_1/file 3, the end result is that the link count
of inode 15 goes from 2 to 1 (because dir_2/file_5 still points there), and the
kernel knows not to remove the inode.

Link counts work much the same for directories. Note that inode 12’s
link count is 2, because there are two inode links there: one for dir_I in
the directory entries for inode 2 and the second a self-reference (.) in its
own directory entries. If you create a new directory dir_1/dir_3, the link
count for inode 12 would go to 3 because the new directory would include a
parent (..) entry that links back to inode 12, much as inode 12’s parent link
points to inode 2.

There is one small exception in link counts. The root inode 2 has a link
count of 4. However, Figure 4-10 shows only three directory entry links. The
“fourth” link is in the filesystem’s superblock because the superblock tells
you where to find the root inode.

Don’t be afraid to experiment on your system. Creating a direc-
tory structure and then using 1s -i or stat to walk through the pieces is
harmless. You don’t need to be root (unless you mount and create a new
filesystem).

4.6.2 Block Allocation

There’s still one piece missing from our discussion. When allocating data
pool blocks for a new file, how does the filesystem know which blocks are
in use and which are available? One of the most basic ways is to use an
additional management data structure called a block bitmap. In this scheme,
the filesystem reserves a series of bytes, with each bit corresponding to one
block in the data pool. A value of 0 means that the block is free, and a 1
means that it’s in use. Thus, allocating and deallocating blocks is a matter
of flipping bits.

Problems in a filesystem arise when the inode table data doesn’t match
the block allocation data or when the link counts are incorrect; for exam-
ple, this can happen when you don’t cleanly shut down a system. Therefore,
when you check a filesystem, as described in Section 4.2.11, the fsck program
walks through the inode table and directory structure to generate new link
counts and a new block allocation map (such as the block bitmap), and
then it compares the newly generated data with the filesystem on the disk.
If there are mismatches, fsck must fix the link counts and determine what
to do with any inodes and/or data that didn’t come up when it traversed the
directory structure. Most fsck programs make these “orphans” new files in
the filesystem’s lost+found directory.

4.6.3 Working with Filesystems in User Space

When working with files and directories in user space, you shouldn’t have to
worry much about the implementation going on below them. Processes are
expected to access the contents of files and directories of a mounted file-
system through kernel system calls. Curiously, though, you do have access
to certain filesystem information that doesn’t seem to fit in user space—in
particular, the stat() system call returns inode numbers and link counts.

When you’re not maintaining a filesystem, do you have to worry about
inode numbers, link counts, and other implementation details? Generally,
no. This stuff is accessible to user-mode programs primarily for backward
compatibility. Furthermore, not all filesystems available in Linux have these
filesystem internals. The VFS interface layer ensures that system calls always
return inode numbers and link counts, but those numbers may not neces-
sarily mean anything.

You may not be able to perform traditional Unix filesystem operations
on nontraditional filesystems. For example, you can’t use 1n to create a hard
link on a mounted VFAT filesystem because its directory entry structure,
designed for Windows rather than Unix/Linux, does not support that
concept.

Fortunately, the system calls available to user space on Linux systems
provide enough abstraction for painless file access—you don’t need to know
anything about the underlying implementation in order to access files. In
addition, filenames are flexible in format and mixed-case names are sup-
ported, making it easy to support other hierarchical-style filesystems.

Remember, specific filesystem support does not necessarily need to be
in the kernel. For example, in user-space filesystems, the kernel only needs
to act as a conduit for system calls.

Disks and Filesystems 115

HOW THE LINUX KERNEL BOOTS

You now know the physical and logical
structure of a Linux system, what the ker-

nel is, and how to work with processes. This
chapter will teach you how the kernel starts,

or boots. In other words, you’ll learn how the kernel

moves into memory and what it does up to the point

where the first user process starts.
A simplified view of the boot process looks like this:

The machine’s BIOS or boot firmware loads and runs a boot loader.

2. The boot loader finds the kernel image on disk, loads it into memory,
and starts it.

3. The kernel initializes the devices and its drivers.
4. The kernel mounts the root filesystem.

5. The kernel starts a program called init with a process ID of 1. This point
is the user space start.

6. 1init sets the rest of the system processes in motion.

7. Atsome point, init starts a process allowing you to log in, usually at the
end or near the end of the boot sequence.

This chapter covers the first couple of stages, focusing on the boot
loaders and kernel. Chapter 6 continues with the user space start by
detailing systemd, the most widespread version of init on Linux systems.

Being able to identify each stage of the boot process will prove invalu-
able to you in fixing boot problems and understanding the system as a whole.
However, the default behavior in many Linux distributions often makes it dif-
ficult, if not impossible, to identify the first few boot stages as they proceed,
so you'll probably be able to get a good look only after they’ve completed and
you log in.

5.1 Startup Messages

Traditional Unix systems produce many diagnostic messages upon boot
that tell you about the boot process. The messages come first from the ker-
nel and then from processes and initialization procedures that init starts.
However, these messages aren’t pretty or consistent, and in some cases they
aren’t even very informative. In addition, hardware improvements have
caused the kernel to start much faster than before; the messages flash by
so quickly, it can be difficult to see what’s happening. As a result, most cur-
rent Linux distributions do their best to hide boot diagnostics with splash
screens and other forms of filler to distract you while the system starts.

The best way to view the kernel’s boot and runtime diagnostic mes-
sages is to retrieve the journal for the kernel with the journalctl command.
Running journalctl -k displays the messages from the current boot, but you
can view previous boots with the -b option. We’ll cover the journal in more
detail in Chapter 7.

If you don’t have systemd, you can check for a logfile such as /var/log/
kern.log or run the dmesg command to view the messages in the kernel ring
buffer.

Here’s a sample of what you can expect to see from the journalctl -k
command:

microcode: microcode updated early to revision 0xd6, date = 2019-10-03

Linux version 4.15.0-112-generic (buildd@lcyo1-amd64-027) (gcc version 7.5.0
(Ubuntu 7.5.0-3ubuntu1~18.04)) #113-Ubuntu SMP Thu Jul 9 23:41:39 UTC 2020 (Ubuntu
4.15.0-112.113-generic 4.15.18)

Command line: BOOT_IMAGE=/boot/vmlinuz-4.15.0-112-generic root=UUID=17f12d53-c3d7-4ab3-943e-
a0a72366c9fa ro quiet splash vt.handoff=1

KERNEL supported cpus:

--snip--

scsi 2:0:0:0: Direct-Access ATA KINGSTON SM2280S 01.R PQ: 0 ANSI: 5

sd 2:0:0:0: Attached scsi generic sg0 type 0

sd 2:0:0:0: [sda] 468862128 512-byte logical blocks: (240 GB/224 GiB)

18 Chapter 5

sd 2:0:0:0: [sda] Write Protect is off

sd 2:0:0:0: [sda] Mode Sense: 00 3a 00 00

sd 2:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
sda: sdal sda2 < sda5 >

sd 2:0:0:0: [sda] Attached SCSI disk

--snip--

After the kernel has started, the user-space startup procedure often
generates messages. These messages will likely be more difficult to view
and review because on most systems you won’t find them in a single logfile.
Startup scripts are designed to send messages to the console that are erased
after the boot process finishes. However, this isn’t a problem on Linux sys-
tems because systemd captures diagnostic messages from startup and run-
time that would normally go to the console.

5.2 Kernel Initialization and Boot Options

Upon startup, the Linux kernel initializes in this general order:

CPU inspection

Memory inspection

Device bus discovery

Device discovery

Auxiliary kernel subsystem setup (networking and the like)

Root filesystem mount

N o Otk 0 o=

User space start

The first two steps aren’t too remarkable, but when the kernel gets to
devices, the question of dependencies arises. For example, the disk device
drivers may depend on bus support and SCSI subsystem support, as you
saw in Chapter 3. Then, later in the initialization process, the kernel must
mount a root filesystem before starting init.

In general, you won’t have to worry about the dependencies, except
that some necessary components may be loadable kernel modules rather
than part of the main kernel. Some machines may need to load these ker-
nel modules before the true root filesystem is mounted. We’ll cover this
problem and its initial RAM filesystem (initrd) workaround solutions in
Section 6.7.

The kernel emits certain kinds of messages indicating that it’s getting
ready to start its first user process:

Freeing unused kernel memory: 2408K
Write protecting the kernel read-only data: 20480k
Freeing unused kernel memory: 2008K
Freeing unused kernel memory: 1892K

How the Linux Kernel Boots 19

120

5.3

Chapter 5

Here, not only is the kernel cleaning up some unused memory, but it’s
also protecting its own data. Then, if you're running a new enough kernel,
you’ll see the kernel start the first user-space process as init:

Run /init as init process
with arguments:
--snip--

Later on, you should be able to see the root filesystem being mounted
and systemd starting up, sending a few messages of its own to the kernel log:

EXT4-fs (sda1): mounted filesystem with ordered data mode. Opts: (null)
systemd[1]: systemd 237 running in system mode. (+PAM +AUDIT +SELINUX +IMA
+APPARMOR +SMACK +SYSVINIT +UTMP +LIBCRYPTSETUP +GCRYPT +GNUTLS +ACL +XZ +LZ4
+SECCOMP +BLKID +ELFUTILS +KMOD -IDN2 +IDN -PCRE2 default-hierarchy=hybrid)
systemd[1]: Detected architecture x86-64.

systemd[1]: Set hostname to <duplex>.

At this point, you definitely know that user space has started.

Kernel Parameters

When the Linux kernel starts, it receives a set of text-based kernel parameters
containing a few additional system details. The parameters specify many
different types of behavior, such as the amount of diagnostic output the
kernel should produce and device driver—specific options.

You can view the parameters passed to your system’s currently running
kernel by looking at the /proc/cmdline file:

$ cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinuz-4.15.0-43-generic root=UUID=17f12d53-c3d7-4ab3-943e
-a0a72366c9fa ro quiet splash vt.handoff=1

The parameters are either simple one-word flags, such as ro and quiet,
or key=value pairs, such as vt.handoff=1. Many of the parameters are unim-
portant, such as the splash flag for displaying a splash screen, but one that
is critical is the root parameter. This is the location of the root filesystem;
without it, the kernel cannot properly perform the user space start.

The root filesystem can be specified as a device file, as in this example:

root=/dev/sda1

On most contemporary systems, there are two alternatives that are
more common. First, you might see a logical volume such as this:

root=/dev/mapper/my-system-root

You may also see a UUID (see Section 4.2.4):

root=UUID=17f12d53-c3d7-4ab3-943e-a0a72366c9fa

5.4

Both of these are preferable because they do not depend on a specific
kernel device mapping.

The ro parameter instructs the kernel to mount the root filesystem
in read-only mode upon user space start. This is normal; read-only mode
ensures that fsck can check the root filesystem safely before trying to do
anything serious. After the check, the bootup process remounts the root
filesystem in read-write mode.

Upon encountering a parameter that it doesn’t understand, the Linux
kernel saves that parameter. The kernel later passes the parameter to init
when performing the user space start. For example, if you add -s to the ker-
nel parameters, the kernel passes the -s to the init program to indicate that
it should start in single-user mode.

If you're interested in the basic boot parameters, the bootparam(7)
manual page gives an overview. If you're looking for something very spe-
cific, you can check out kernel-params.ixt, a reference file that comes with the
Linux kernel.

With these basics covered, you should feel free to skip ahead to Chapter 6
to learn the specifics of user space start, the initial RAM disk, and the init
program that the kernel runs as its first process. The remainder of this chap-
ter details how the kernel loads into memory and starts, including how it gets
its parameters.

Boot Loaders

At the start of the boot process, before the kernel and init start, a boot loader
program starts the kernel. The boot loader’s job sounds simple: it loads the
kernel into memory from somewhere on a disk and then starts the kernel
with a set of kernel parameters. However, this job is more complicated than
it appears. To understand why, consider the questions that the boot loader
must answer:

e Where is the kernel?

e What kernel parameters should be passed to the kernel when it starts?

The answers are (typically) that the kernel and its parameters are usually
somewhere on the root filesystem. It may sound like the kernel parameters
should be easy to find, but remember that the kernel itself is not yet running,
and it’s the kernel that usually traverses a filesystem to find the necessary
files. Worse, the kernel device drivers normally used to access the disk are
also unavailable. Think of this as a kind of “chicken or egg” problem. It can
get even more complicated than this, but for now, let’s see how a boot loader
overcomes the obstacles of the drivers and the filesystem.

A boot loader does need a driver to access the disk, but it’s not the same
one that the kernel uses. On PCs, boot loaders use the traditional Basic Input/
Output System (BIOS) or the newer Unified Extensible Firmware Interface (UEFI) to
access disks. (Extensible Firmware Interface, or EFI, and UEFI will be discussed
in more detail in Section 5.8.2.) Contemporary disk hardware includes

How the Linux Kernel Boots 121

122

Chapter 5

firmware allowing the BIOS or UEFTI to access attached storage hardware via
Logical Block Addressing (LBA). LBA is a universal, simple way to access data
from any disk, but its performance is poor. This isn’t a problem, though,
because boot loaders are often the only programs that must use this mode
for disk access; after starting, the kernel has access to its own high-perfor-
mance drivers.

To determine if your system uses a BIOS or UEFI, run efibootmgr. If you get a list
of boot targets, your system has UEFI. If instead yow’re told that EFI variables aren’t
supported, your system uses a BIOS. Alternatively, you can check to see that /sys/
firmware/efi exists; if so, your system uses UEF].

Once access to the disk’s raw data has been resolved, the boot loader
must do the work of locating the desired data on the filesystem. Most com-
mon boot loaders can read partition tables and have built-in support for
read-only access to filesystems. Thus, they can find and read the files that
they need to get the kernel into memory. This capability makes it far easier
to dynamically configure and enhance the boot loader. Linux boot loaders
have not always had this capability; without it, configuring the boot loader
was more difficult.

In general, there’s been a pattern of the kernel adding new features
(especially in storage technology), followed by boot loaders adding sepa-
rate, simplified versions of those features to compensate.

5.4.1 Boot Loader Tasks

A Linux boot loader’s core functionality includes the ability to do the
following:

e Select from multiple kernels.
e Switch between sets of kernel parameters.

e Allow the user to manually override and edit kernel image names and
parameters (for example, to enter single-user mode).

e Provide support for booting other operating systems.

Boot loaders have become considerably more advanced since the
inception of the Linux kernel, with features such as command-line history
and menu systems, but a basic need has always been flexibility in kernel
image and parameter selection. (One surprising phenomenon is that
some needs have actually diminished. For example, because you can
perform an emergency or recovery boot from a USB storage device, you
rarely have to worry about manually entering kernel parameters or going
into single-user mode.) Current boot loaders offer more power than ever,
which can be particularly handy if you're building custom kernels or just
want to tweak parameters.

3.5

5.4.2 Boot Loader Overview

Here are the main boot loaders that you may encounter:

GRUB A near-universal standard on Linux systems, with BIOS/MBR
and UEFI versions.

LILO One of the first Linux boot loaders. ELILO is a UEFI version.

SYSLINUX Can be configured to run from many different kinds of
filesystems.

LOADLIN Boots a kernel from MS-DOS.
systemd-boot A simple UEFI boot manager.

coreboot (formerly LinuxBIOS) A high-performance replacement for
the PC BIOS that can include a kernel.

Linux Kernel EFISTUB A kernel plug-in for loading the kernel
directly from a EFI/UEFI System Partition (ESP).

efilinux A UEFI boot loader intended to serve as a model and refer-
ence for other UEFI boot loaders.

This book deals almost exclusively with GRUB. The rationale behind
using other boot loaders is that they’re simpler to configure than GRUB,
they’re faster, or they provide some other special-purpose functionality.

You can learn a lot about a boot loader by getting to a boot prompt
where you can enter a kernel name and parameters. To do this, you need to
know how to get to a boot prompt or menu. Unfortunately, this can some-
times be difficult to figure out because Linux distributions heavily custom-
ize boot loader behavior and appearance. It’s usually impossible to tell just
by watching the boot process which boot loader the distribution uses.

The next sections tell you how to get to a boot prompt in order to enter
a kernel name and parameters. Once you’re comfortable with that, you’ll
see how to configure and install a boot loader.

GRUB Introduction

GRUB stands for Grand Unified Boot Loader. We’ll cover GRUB 2, but there’s
also an older version called GRUB Legacy that’s no longer in active use.

One of GRUB’s most important capabilities is filesystem navigation that
allows for easy kernel image and configuration selection. One of the best
ways to see this in action and to learn about GRUB in general is to look at
its menu. The interface is easy to navigate, but there’s a good chance that
you’ve never seen it.

To access the GRUB menu, press and hold SHIFT when your BIOS
startup screen first appears, or ESC if your system has UEFI. Otherwise,
the boot loader configuration may not pause before loading the kernel.
Figure 5-1 shows the GRUB menu.

How the Linux Kernel Boots 123

124

Chapter 5

GNU GRUB wersion 2.82

Advanced options for Ubuntu
Memory test (memtestBa+)
Hemory test (memtestdc+, serial console 11526@)

Use the T and | keys to select which entry is highlighted.
Press enter to boot the selected 03, e' to edit the commands
hefore booting or "c' for & command-line.

Figure 5-1: GRUB menu

Try the following to explore the boot loader:

Reboot or power on your Linux system.

2. Hold down SHIFT during the BIOS self-test or ESC at the firmware
splash screen to get the GRUB menu. (Sometimes these screens are not
visible, so you have to guess when to press the button.)

3. Press e to view the boot loader configuration commands for the default

boot option. You should see something like Figure 5-2 (you might have
to scroll down to see all of the details).

GNU GRUB wersion 2.82

zetparams 'Ubuntu'
recordfail
load_video
gfxmade #1linux_gfx_made
insmod ¢zio
it [##grub_platform = xxen]; then insmod xzio; insmod lzopio;
fi
insmod part_msdos
insmod ext2
Q:=et root='hdd,msdos1’
@=carch --no-floppy --fs-uuid --set=root 8h9z616e-1dh7-4bad-aczf-»
36ee2dh39eda

linux © shootsumlinuz-4.15.8-45-generic root=UUID=GhIz610e-"
1db7-4ha3-ac2f -30ee24h39edd ro guiet splash #et_handoff
initrd O shootsinitrd. img-4.15.@-45-generic 1

Minimum Emacs-1like screen editing is supported. TAE lists
completions. Press Ctrl-x or F16 to bhoot, Ctrl-c or F2 for a
command-1line or ESC to discard edits and return to the GRUB
MEnL .

Figure 5-2: GRUB configuration editor

NOTE

This screen tells us that for this configuration, the root is set with a
UUID, the kernel image is /boot/vmlinuz-4.15.0-45-generic, and the kernel
parameters include ro, quiet, and splash. The initial RAM filesystem is /boot/
initrd.img-4.15.0-45-generic. But if you've never seen this sort of configuration
before, you might find it somewhat confusing. Why are there multiple refer-
ences to root, and why are they different? Why is insmod here? If you’ve seen
this before, you might remember that it’s a Linux kernel feature normally
run by udevd.

The double takes are warranted, because GRUB doesn’t use the Linux
kernel (remember, its job is to start the kernel). The configuration you see
consists wholly of features and commands internal to GRUB, which exists in
its own separate world.

The confusion stems partly from the fact that GRUB borrows terminol-
ogy from many sources. GRUB has its own “kernel” and its own insmod com-
mand to dynamically load GRUB modules, completely independent of the
Linux kernel. Many GRUB commands are similar to Unix shell commands;
there’s even an 1s command to list files.

There’s a GRUB module for LVM that is required to boot systems where the kernel
resides on a logical volume. You might see this on your system.

By far, the most confusion results from GRUB’s use of the word root.
Normally, you think of root as your system’s root filesystem. In a GRUB con-
figuration, this is a kernel parameter, located somewhere after the image
name of the linux command.

Every other reference to root in the configuration is to the GRUB root,
which exists only inside of GRUB. The GRUB “root” is the filesystem where
GRUB searches for kernel and RAM filesystem image files.

In Figure 5-2, the GRUB root is first set to a GRUB-specific device
(hdo,msdos1), a default value for this configuration @. In the next command,
GRUB then searches for a particular UUID on a partition @. If it finds that
UUID, it sets the GRUB root to that partition.

To wrap it up, the linux command’s first argument (/boot/vmlinuz-. . .)
is the location of the Linux kernel image file ®. GRUB loads this file from
the GRUB root. The initrd command is similar, specifying the file for the
initial RAM filesystem covered in Chapter 6 @.

You can edit this configuration inside GRUB; doing so is usually the
easiest way to temporarily fix an erroneous boot. To permanently fix a boot
problem, you’ll need to change the configuration (see Section 5.5.2), but
for now, let’s go one step deeper and examine some GRUB internals with
the command-line interface.

5.5.1 Exploring Devices and Partitions with the GRUB Command Line

As you can see in Figure 5-2, GRUB has its own device-addressing scheme.
For example, the first hard disk found is named hd0, followed by hdl, and
so on. Device name assignments are subject to change, but fortunately
GRUB can search all partitions for UUIDs to find the one where the kernel
resides, as you just saw in Figure 5-2 with the search command.

How the Linux Kernel Boots 125

126

Chapter 5

Listing Devices

To get a feel for how GRUB refers to the devices on your system, access the
GRUB command line by pressing c at the boot menu or configuration edi-
tor. You should get the GRUB prompt:

grub>

You can enter any command here that you see in a configuration, but to
get started, try a diagnostic command instead: 1s. With no arguments, the
output is a list of devices known to GRUB:

grub> 1s
(hdo) (hdo,msdos1)

In this case, there is one main disk device denoted by (hdo) and a single
partition (hdo,msdos1). If there were a swap partition on the disk, it would
show up as well, such as (hdo,msdos5). The msdos prefix on the partitions tells
you that the disk contains an MBR partition table; it would begin with gpt
for GPT, found on UEFI systems. (There are even deeper combinations
with a third identifier, where a BSD disklabel map resides inside a partition,
but you won’t normally have to worry about this unless you're running mul-
tiple operating systems on one machine.)

To get more detailed information, use 1s -1. This command can be par-
ticularly useful because it displays any UUIDs of the partition filesystems.
For example:

grub> 1s -1
Device hdo: No known filesystem detected - Sector size 512B - Total size
32009856KiB
Partition hdo,msdos1: Filesystem type ext* - Last modification time
2019-02-14 19:11:28 Thursday, UUID 8b92610e-1db7-4ba3-ac2f-
30ee24b39ed0 - Partition start at 1024Kib - Total size 32008192KiB

This particular disk has a Linux ext2/3/4 filesystem on the first MBR
partition. Systems using a swap partition will show another partition, but
you won’t be able to tell its type from the output.

File Navigation

Now let’s look at GRUB’s filesystem navigation capabilities. Determine the
GRUB root with the echo command (recall that this is where GRUB expects
to find the kernel):

grub> echo $root
hdo,msdos1

To use GRUB’s 1s command to list the files and directories in that root,
you can append a forward slash to the end of the partition:

grub> 1s (hdo,msdos1)/

NOTE

Because it’s inconvenient to type the actual root partition, you can sub-
stitute the root variable to save yourself some time:

grub> 1s ($root)/

The output is a short list of file and directory names on that partition’s
filesystem, such as etc/, bin/, and dev/. This is now a completely different
function of the GRUB 1s command. Before, you were listing devices, parti-
tion tables, and perhaps some filesystem header information. Now you’re
actually looking at the contents of filesystems.

You can take a deeper look into the files and directories on a partition
in a similar manner. For example, to inspect the /boot directory, start with
the following:

grub> 1s ($root)/boot

Use the up and down arrow keys to flip through the GRUB command history and the
left and right arrows to edit the current command line. The standard readline keys
(CTRL-N, CTRL-P, and so on) also work.

You can also view all currently set GRUB variables with the set
command:

grub> set

?=0
color_highlight=black/white
color normal=white/black
--snip--
prefix=(hdo,msdos1)/boot/grub
root=hdo,msdos1

One of the most important of these variables is $prefix, the filesystem
and directory where GRUB expects to find its configuration and auxiliary
support. We’ll discuss GRUB configuration next.

Once you’ve finished with the GRUB command-line interface, you can
press ESC to return to the GRUB menu. Alternatively, if you’ve set all of the
necessary configuration for boot (including the linux and possibly initrd
variables), you can enter the boot command to boot that configuration. In
any case, boot your system. We’re going to explore the GRUB configuration,
and that’s best done when you have your full system available.

5.5.2 GRUB Configuration

The GRUB configuration directory is usually /boot/grub or /boot/grub2. It
contains the central configuration file, grub.cfg, an architecture-specific
directory such as i386-pc containing loadable modules with a .mod suffix,
and a few other items such as fonts and localization information. We won’t
modify grub.cfg directly; instead, we’ll use the grub-mkconfig command (or
grub2-mkconfig on Fedora).

How the Linux Kernel Boots 127

Reviewing grub.cfg

First, take a quick look at grub.cfg to see how GRUB initializes its menu and
kernel options. You’ll see that the file consists of GRUB commands, which
usually begin with a number of initialization steps followed by a series of
menu entries for different kernel and boot configurations. The initializa-
tion isn’t complicated, but there are a lot of conditionals at the beginning
that might lead you to believe otherwise. This first part just consists of a
bunch of function definitions, default values, and video setup commands
such as this:

if loadfont $font ; then
set gfxmode=auto
load video
insmod gfxterm
--snip--

Many variables such as $font originate from a load_env call near the beginning of

grub.cfg.

Later in the configuration file, you’ll find the available boot configura-
tions, each beginning with the menuentry command. You should be able to
read and understand this example based on what you learned in the pre-
ceding section:

menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os $menuentry id option
"gnulinux-simple-8b92610e-1db7-4ba3-ac2f-30ee24b39ed0’ {

recordfail

load_video

gfxmode $linux_gfx mode

insmod gzio

if [x$grub_platform = xxen]; then insmod xzio; insmod lzopio; fi

insmod part_msdos

insmod ext2

set root="hdo,msdos1’

search --no-floppy --fs-uuid --set=root 8b92610e-1db7-4ba3-ac2f-30ee24b39edo

linux /boot/vmlinuz-4.15.0-45-generic root=UUID=8b92610e-1db7-4ba3-ac2f-30ee24b39edo

ro quiet splash $vt_handoff

}

initrd /boot/initrd.img-4.15.0-45-generic

128

Examine your grub.cfg file for submenu commands containing multiple
menuentry commands. Many distributions use the submenu command for older
versions of the kernel so that they don’t crowd the GRUB menu.

Generating a New Configuration File

If you want to make changes to your GRUB configuration, don’t edit your
grub.cfg file directly, because it’s automatically generated and the system
occasionally overwrites it. You’ll set up your new configuration elsewhere
and then run grub-mkconfig to generate the new configuration.

Chapter 5

NOTE

To see how the configuration generation works, look at the very begin-
ning of grub.cfg. There should be comment lines such as this:

#i#t#t BEGIN /etc/grub.d/00 _header #i#

Upon further inspection, you’ll find that nearly every file in /etc/grub.d
is a shell script that produces a piece of the grub.¢fg file. The grub-mkconfig
command itself is a shell script that runs everything in /et¢/grub.d. Keep in
mind that GRUB itself does not run these scripts at boot time; we run the
scripts in user space to generate the grub.cfg file that GRUB runs.

Try it yourself as root. Don’t worry about overwriting your current con-
figuration. This command by itself simply prints the configuration to the
standard output.

grub-mkconfig

What if you want to add menu entries and other commands to the
GRUB configuration? The short answer is that you should put your cus-
tomizations into a new custom.cfg file in your GRUB configuration directory
(usually /boot/grub/custom.cfg).

The long answer is a little more complicated. The /etc/grub.d configura-
tion directory gives you two options: 40_custom and 41_custom. The first,
40_custom, is a script that you can edit yourself, but it’s the least stable; a
package upgrade is likely to destroy any changes you make. The 41_custom
script is simpler; it’s just a series of commands that load custom.cfg when
GRUB starts. If you choose this second option, your changes won’t appear
when you generate your configuration file because GRUB does all of the
work at boot time.

The numbers in front of the filenames affect the processing order; lower numbers come
first in the configuration file.

The two options for custom configuration files aren’t particularly
extensive, and there’s nothing stopping you from adding your own scripts to
generate configuration data. You might see some additions specific to your
particular distribution in the /et¢/grub.d directory. For example, Ubuntu
adds memory tester boot options (memtest86+) to the configuration.

To write and install a newly generated GRUB configuration file, you
can write the configuration to your GRUB directory with the -o option to
grub-mkconfig, like this:

grub-mkconfig -o /boot/grub/grub.cfg

As usual, back up your old configuration and make sure that you're
installing to the correct directory.

Now we’re going to get into some of the more technical details of
GRUB and boot loaders. If you're tired of hearing about boot loaders and
the kernel, skip to Chapter 6.

How the Linux Kernel Boots 129

130

Chapter 5

5.5.3 GRUB Installation

Installing GRUB is more involved than configuring it. Fortunately, you
won’t normally have to worry about installation because your distribution
should handle it for you. However, if you're trying to duplicate or restore
a bootable disk, or preparing your own boot sequence, you might need to
install it on your own.

Before proceeding, read Section 5.4 to get an idea of how PCs boot and
determine whether youre using MBR or UEFI boot. Next, build the GRUB
software set and determine where your GRUB directory will be; the default
is /boot/grub. You may not need to build GRUB if your distribution does it
for you, but if you do, see Chapter 16 for how to build software from source
code. Make sure that you build the correct target: it’s different for MBR or
UEFI boot (and there are even differences between 32-bit and 64-bit EFT).

Installing GRUB on Your System

Installing the boot loader requires that you or an installer program deter-
mine the following:

¢ The target GRUB directory as seen by your currently running system.
As just mentioned, that’s usually /boot/grub, but it might be different if
you’re installing GRUB on another disk for use on another system.

e The current device of the GRUB target disk.

e For UEFI booting, the current mount point of the EFI system partition
(usually /boot/efr).

Remember that GRUB is a modular system, but in order to load mod-
ules, it must read the filesystem that contains the GRUB directory. Your task
is to construct a version of GRUB capable of reading that filesystem so that
it can load the rest of its configuration (grub.cfg) and any required modules.
On Linux, this usually means building a version of GRUB with its ext2.mod
module (and possibly lum.mod) preloaded. Once you have this version, all
you need to do is place it on the bootable part of the disk and place the rest
of the required files into /boot/grub.

Fortunately, GRUB comes with a utility called grub-install (not to be
confused with install-grub, which you might find on some older systems),
which performs most of the work of installing the GRUB files and configu-
ration for you. For example, if your current disk is at /dev/sda and you want
to install GRUB on that disk’s MBR with your current /boot/grub directory,
use this command:

grub-install /dev/sda

Incorrectly installing GRUB may break the bootup sequence on your system, so don’t
take this command lightly. If you’re concerned, research how to back wp your MBR
with dd, back wp any other currently installed GRUB directory, and make sure that
you have an emergency bootup plan.

3.6

Installing GRUB Using MBR on an External Storage Device

To install GRUB on a storage device outside the current system, you must
manually specify the GRUB directory on that device as your current system
now sees it. For example, say you have a target device of /dev/sdc and that
device’s root filesystem containing /boot (for example, /dev/sdcl) is mounted
on /mnt of your current system. This implies that when you install GRUB,
your current system will see the GRUB files in /mnt/boot/grub. When run-
ning grub-install, tell it where those files should go as follows:

grub-install --boot-directory=/mnt/boot /dev/sdc

On most MBR systems, /boot is a part of the root filesystem, but some
installations put /boot into its own separate filesystem. Make sure that you
know where your target /boot resides.

Installing GRUB with UEFI

UEFI installation is supposed to be easier, because all you have to do is copy
the boot loader into place. But you also need to “announce” the boot loader
to the firmware—that is, save the loader configuration to the NVRAM—
with the efibootmgr command. The grub-install command runs this if it’s
available, so normally you can install GRUB on a UEFI system like this:

grub-install --efi-directory=efi_dir --bootloader-id=name

Here, efi_dir is where the UEFI directory appears on your current sys-
tem (usually /boot/efi/EFI, because the UEFI partition is typically mounted
at /boot/efi) and name is an identifier for the boot loader.

Unfortunately, many problems can crop up when you’re installing a
UEFI boot loader. For example, if you're installing to a disk that will eventu-
ally end up in another system, you have to figure out how to announce that
boot loader to the new system’s firmware. And there are differences in the
install procedure for removable media.

But one of the biggest problems is UEFI secure boot.

UEFI Secure Boot Problems

One newer problem affecting Linux installations is dealing with the secure boot
feature found on recent PCs. When active, this UEFI mechanism requires
any boot loader to be digitally signed by a trusted authority in order to run.
Microsoft has required hardware vendors shipping Windows 8 and later
with their systems to use secure boot. The result is that if you try to install an
unsigned boot loader on these systems, the firmware will reject the loader and
the operating system won’t load.

Major Linux distributions have no problem with secure boot because
they include signed boot loaders, usually based on a UEFI version of GRUB.
Often there’s a small signed shim that goes between UEFI and GRUB; UEFI
runs the shim, which in turn executes GRUB. Protecting against booting

How the Linux Kernel Boots 131

132

5.7

5.8

Chapter 5

unauthorized software is an important feature if your machine is not in a
trustworthy environment or needs to meet certain security requirements,
so some distributions go a step further and require that the entire boot
sequence (including the kernel) be signed.

There are some disadvantages to secure boot systems, especially for
someone experimenting with building their own boot loaders. You can get
around the secure boot requirement by disabling it in the UEFI settings.
However, this won’t work cleanly for dual-boot systems since Windows won’t
run without secure boot enabled.

Chainloading Other Operating Systems

UEFI makes it relatively easy to support loading other operating systems
because you can install multiple boot loaders in the EFI partition. However,
the older MBR style doesn’t support this functionality, and even if you do
have UEFI, you may still have an individual partition with an MBR-style
boot loader that you want to use. Instead of configuring and running a
Linux kernel, GRUB can load and run a different boot loader on a specific
partition on your disk; this is called chainloading.

To chainload, create a new menu entry in your GRUB configuration
(using one of the methods described in the section “Generating a New
Configuration File”). Here’s an example for a Windows installation on the
third partition of a disk:

menuentry "Windows" {
insmod chain
insmod ntfs
set root=(hdo,3)
chainloader +1

The +1 option tells chainloader to load whatever is at the first sector of a
partition. You can also get it to directly load a file, by using a line like this to
load the 7o.sys MS-DOS loader:

menuentry "DOS" {
insmod chain
insmod fat
set root=(hdo,3)
chainloader /io.sys

Boot Loader Details

Now we’ll look quickly at some boot loader internals. To understand how
boot loaders like GRUB work, first we’ll survey how a PC boots when you
turn it on. Because they must address the many inadequacies of traditional

PC boot mechanisms, boot loading schemes have several variations, but
there are two main ones: MBR and UEFI.

5.8.1 MBR Boot

In addition to the partition information described in Section 4.1, the MBR
includes a small area of 441 bytes that the PC BIOS loads and executes after
its Power-On Self-Test (POST). Unfortunately, this space is inadequate to
house almost any boot loader, so additional space is necessary, resulting

in what is sometimes called a multistage boot loader. In this case the initial
piece of code in the MBR does nothing other than load the rest of the boot
loader code. The remaining pieces of the boot loader are usually stuffed
into the space between the MBR and the first partition on the disk. This
isn’t terribly secure because anything can overwrite the code there, but
most boot loaders do it, including most GRUB installations.

This scheme of shoving the boot loader code after the MBR doesn’t
work with a GPT-partitioned disk using the BIOS to boot because the GPT
information resides in the area after the MBR. (GPT leaves the traditional
MBR alone for backward compatibility.) The workaround for GPT is to
create a small partition called a BIOS boot partition with a special UUID
(21686148-6449-6E6F-744E-656564454649) to give the full boot loader code a
place to reside. However, this isn’t a common configuration, because GPT is
normally used with UEFI, not the traditional BIOS. It’s usually found only
in older systems that have very large disks (greater than 2TB); these are too
large for MBR.

5.8.2 UEFI Boot

PC manufacturers and software companies realized that the traditional PC
BIOS is severely limited, so they decided to develop a replacement called
Extensible Firmware Interface (EFI), which we’ve already discussed a bit in
a few places in this chapter. EFI took a while to catch on for most PCs, but
today it’s the most common, especially now that Microsoft requires secure
boot for Windows. The current standard is Unified EFI (UEFI), which
includes features such as a built-in shell and the ability to read partition
tables and navigate filesystems. The GPT partitioning scheme is part of the
UEFI standard.

Booting is radically different on UEFI systems compared to MBR. For
the most part, it’s much easier to understand. Rather than executable boot
code residing outside of a filesystem, there’s always a special VFAT file-
system called the EFI System Partition (ESP), which contains a directory
named EFI. The ESP is usually mounted on your Linux system at /boot/efi,
so you’ll probably find most of the EFI directory structure starting at /boot/
efi/EFI. Each boot loader has its own identifier and a corresponding subdi-
rectory, such as efi/microsoft, efi/apple, efi/ubuntu, or efi/grub. A boot loader
file has a .efi extension and resides in one of these subdirectories, along
with other supporting files. If you go exploring, you might find files such as
grubx64.efi (the EFI version of GRUB) and shimx64.¢fi.

How the Linux Kernel Boots 133

134

Chapter 5

The ESP differs from a BIOS boot partition, described in Section 5.8.1, and has a
different UUID. You shouldn’t encounter a system with both.

There’s a wrinkle, though: you can’t just put old boot loader code into
the ESP, because the old code was written for the BIOS interface. Instead,
you must provide a boot loader written for UEFI. For example, when using
GRUB, you must install the UEFI version of GRUB rather than the BIOS
version. And, as explained earlier in “Installing GRUB with UEFI,” you
must announce new boot loaders to the firmware.

Finally, as Section 5.6 noted, we have to contend with the “secure boot”
issue.

5.8.3 How GRUB Works

Let’s wrap up our discussion of GRUB by looking at how it does its work:

1. The PC BIOS or firmware initializes the hardware and searches its boot-
order storage devices for boot code.

2. Upon finding the boot code, the BIOS/firmware loads and executes it.
This is where GRUB begins.

3. The GRUB core loads.

4. The core initializes. At this point, GRUB can now access disks and
filesystems.

5. GRUB identifies its boot partition and loads a configuration there.
6. GRUB gives the user a chance to change the configuration.

7. After a timeout or user action, GRUB executes the configuration (the
sequence of commands in the grub.c¢fg file, as outlined in Section 5.5.2).

8. In the course of executing the configuration, GRUB may load addi-
tional code (modules) in the boot partition. Some of these modules
may be preloaded.

9. GRUB executes a boot command to load and execute the kernel as spec-
ified by the configuration’s linux command.

Steps 3 and 4 of this sequence, where the GRUB core loads, can be
complicated due to the inadequacies of traditional PC boot mechanisms.
The biggest question is “Where is the GRUB core?” There are three basic
possibilities:

e Partially stuffed between the MBR and the beginning of the first
partition
e In aregular partition

e In aspecial boot partition: a GPT boot partition, ESP, or elsewhere

In all cases except where you have an UEFI/ESP, the PC BIOS loads
512 bytes from the MBR, and that’s where GRUB starts. This little piece
(derived from boot.imgin the GRUB directory) isn’t yet the core, but it con-
tains the start location of the core and loads the core from this point.

However, if you have an ESP, the GRUB core goes there as a file. The
firmware can navigate the ESP and directly execute all of GRUB or any other
operating system loader located there. (You might have a shim in the ESP
that goes just before GRUB to handle secure boot, but the idea is the same.)

Still, on most systems, this isn’t the complete picture. The boot loader
might also need to load an initial RAM filesystem image into memory
before loading and executing the kernel. That’s what the initrd configura-
tion parameter specifies, and we’ll cover it in Section 6.7. But before you
learn about the initial RAM filesystem, you should learn about the user
space start—that’s where the next chapter begins.

How the Linux Kernel Boots 135

HOW USER SPACE STARTS

The point where the kernel starts init, its
first user-space process, is significant—

not just because the memory and CPU are

finally ready for normal system operation, but
because that’s where you can see how the rest of the
system builds up as a whole. Prior to this point, the
kernel follows a well-controlled path of execution
defined by a relatively small number of software devel-
opers. User space is far more modular and customiz-
able, and it’s also quite easy to see what goes into the
user-space startup and operation. If you're feeling a
little adventurous, you can use this to an advantage,
because understanding and changing the user-space
startup requires no low-level programming.

138

6.1

Chapter 6

User space starts in roughly this order:
init
Essential low-level services, such as udevd and syslogd

Network configuration

Mid- and high-level services (cron, printing, and so on)

AT

Login prompts, GUIs, and high-level applications, such as web servers

Introduction to init

init is a user-space program like any other program on the Linux system,
and youw’ll find it in /sbin along with many of the other system binaries. Its
main purpose is to start and stop the essential service processes on the
system.

On all current releases of major Linux distributions, the standard
implementation of init is systemd. This chapter focuses on how systemd
works and how to interact with it.

There are two other varieties of init that you may encounter on older sys-
tems. System V init is a traditional sequenced init (Sys V, usually pronounced
“sys-five,” with origins in Unix System V), found on Red Hat Enterprise Linux
(RHEL) prior to version 7.0 and Debian 8. Upstart is the init on Ubuntu dis-
tributions prior to version 15.04.

Other versions of init exist, especially on embedded platforms. For
example, Android has its own init, and a version called runit is popular
on lightweight systems. The BSDs also have their own version of init, but
you’re unlikely to see them on a contemporary Linux machine. (Some dis-
tributions have also modified the System V init configuration to resemble
the BSD style.)

Different implementations of init have been developed to address sev-
eral shortcomings in System V init. To understand the problems, consider
the inner workings of a traditional init. It’s basically a series of scripts that
init runs, in sequence, one at a time. Each script usually starts one service
or configures an individual piece of the system. In most cases, it’s relatively
easy to resolve dependencies, plus there’s a lot of flexibility to accommodate
unusual startup requirements by modifying scripts.

However, this scheme suffers from some significant limitations. These
can be grouped into “performance problems” and “system management
hassles.” The most important of these are as follows:

e Performance suffers because two parts of the boot sequence cannot
normally run at once.

e Managing a running system can be difficult. Startup scripts are expected
to start service daemons. To find the PID of a service daemon, you need
to use ps, some other mechanism specific to the service, or a semistan-
dardized system of recording the PID, such as /var/run/myservice.pid.

6.2

6.3

e Startup scripts tend to include a lot of standard “boilerplate” code,
sometimes making it difficult to read and understand what they do.

e There is little notion of on-demand services and configuration. Most
services start at boot time; system configuration is largely set at that time
as well. At one time, the traditional inetd daemon was able to handle
on-demand network services, but it has largely fallen out of use.

Contemporary init systems have dealt with these problems by changing
how services start, how they are supervised, and how the dependencies are
configured. You’ll soon see how this works in systemd, but first, you should
make sure that you're running it.

Identifying Your init

Determining your system’s version of init usually isn’t difficult. Viewing the
init(1) manual page normally tells you right away, but if you’re not sure, check
your system as follows:

e Ifyour system has /usr/lib/systemd and /etc/systemd directories, you have
systemd.

e Ifyou have an /etc/init directory that contains several .conffiles, you're
probably running Upstart (unless you’re running Debian 7 or older, in
which case you probably have System V init). We won’t cover Upstart in
this book because it has been widely supplanted by systemd.

e If neither of the above is true, but you have an /et¢/inittab file, you're
probably running System V init. Go to Section 6.5.

systemd

The systemd init is one of the newest init implementations on Linux. In
addition to handling the regular boot process, systemd aims to incorporate
the functionality of a number of standard Unix services, such as cron and
inetd. It takes some inspiration from Apple’s launchd.

Where systemd really stands out from its predecessors is its advanced
service management capabilities. Unlike a traditional init, systemd can track
individual service daemons after they start, and group together multiple
processes associated with a service, giving you more power and insight into
exactly what is running on the system.

systemd is goal-oriented. At the top level, you can think of defining a
goal, called a unit, for some system task. A unit can contain instructions for
common startup tasks, such as starting a daemon, and it also has dependen-
cies, which are other units. When starting (or activating) a unit, systemd
attempts to activate its dependencies and then moves on to the details of
the unit.

How User Space Starts 139

140

NOTE

Chapter 6

When starting services, systemd does not follow a rigid sequence;
instead, it activates units whenever they are ready. After boot, systemd
can react to system events (such as the uevents outlined in Chapter 3)
by activating additional units.

Let’s start by looking at a top-level view of units, activation, and the ini-
tial boot process. Then you’ll be ready to see the specifics of unit configura-
tion and the many varieties of unit dependencies. Along the way, you’ll get a
grip on how to view and control a running system.

6.3.1 Units and Unit Types

One way that systemd is more ambitious than previous versions of init is that
it doesn’t just operate processes and services; it can also manage filesystem
mounts, monitor network connection requests, run timers, and more. Each
capability is called a unit type, and each specific function (such as a service)
is called a unit. When you turn on a unit, you activate it. Each unit has its
own configuration file; we’ll explore those files in Section 6.3.3.

These are the most significant unit types that perform the boot-time
tasks on a typical Linux system:

Service units Control the service daemons found on a Unix system.
Target units Control other units, usually by grouping them.

Socket units Represent incoming network connection request
locations.

Mount units Represent the attachment of filesystems to the system.

You can find a complete list of unit types in the systemd(1) manual page.

Of these, service and target units are the most common and the easiest
to understand. Let’s take a look at how they fit together when you boot a
system.

6.3.2 Booting and Unit Dependency Graphs

When you boot a system, you're activating a default unit, normally a tar-

get unit called default.target that groups together a number of service and
mount units as dependencies. As a result, it’s somewhat easy to get a partial
picture of what’s going to happen when you boot. You might expect the unit
dependencies to form a tree—with one unit at the top, branching into sev-
eral units below for later stages of the boot process—but they actually form
a graph. A unit that comes late in the boot process can depend on several
previous units, making earlier branches of a dependency tree join back
together. You can even create a dependency graph with the systemd-analyze
dot command. The entire graph is quite large on a typical system (requiring
significant computing power to render), and it’s hard to read, but there are
ways to filter units and zero in on individual portions.

NOTE

Figure 6-1 shows a very small part of the dependency graph for the
default.target unit found on a typical system. When you activate that unit, all
of the units below it also activate.

On most systems, default.target is a link to some other high-level target unit, such
as one that represents a user inlerface startup. On the system shown in Figure 6-1,
default.target groups the units necessary to start a GUL

default.target

l

mutli-user.target

basic.target cron.service dbus.service

Y

sysinit.target

Figure 6-1: Unit dependency graph

This figure is a greatly simplified view. On your own system, you won’t
find it feasible to sketch out the dependencies just by looking at the unit
configuration file at the top and working your way down. We’ll take a closer
look at how dependencies work in Section 6.3.6.

6.3.3 systemd Configuration

The systemd configuration files are spread among many directories across
the system, so you might need to do a little hunting when you’re looking for
a particular file. There are two main directories for systemd configuration:
the system unit directory (global configuration; usually /lib/systemd/system or
Susr/lib/systemd/system) and the system configuration directory (local definitions;
usually /etc/systemd/system).

To prevent confusion, stick to this rule: avoid making changes to the
system unit directory, because your distribution will maintain it for you.
Make your local changes to the system configuration directory. This gen-
eral rule also applies systemwide. When given the choice between modify-
ing something in /usrand /etc, always change /etc.

How User Space Starts 141

142

Chapter 6

You can check the current systemd configuration search path (includ-
ing precedence) with this command:

$ systemctl -p UnitPath show

UnitPath=/etc/systemd/system.control /run/systemd/system.control /run/systemd/
transient /etc/systemd/system /run/systemd/system /run/systemd/generator /lib/
systemd/system /run/systemd/generator.late

To see the system unit and configuration directories on your system,
use the following commands:

$ pkg-config systemd --variable=systemdsystemunitdir
/1ib/systemd/system
$ pkg-config systemd --variable=systemdsystemconfdir
/etc/systemd/system

Unit Files

The format for unit files is derived from the XDG Desktop Entry specifica-
tion (used for .desktop files, which are very similar to .ini files on Microsoft
systems), with section names in square brackets ([]) and variable and value
assignments (options) in each section.

As an example, consider the dbus-daemon.service unit file for the desktop
bus daemon:

[Unit]

Description=D-Bus System Message Bus
Documentation=man:dbus-daemon(1)
Requires=dbus.socket
RefuseManualStart=yes

[Service]

ExecStart=/usr/bin/dbus-daemon --system --address=systemd: --nofork --nopidfile
--systemd-activation --syslog-only

ExecReload=/usr/bin/dbus-send --print-reply --system --type=method call --dest=
org.freedesktop.DBus / org.freedesktop.DBus.ReloadConfig

There are two sections, [Unit] and [Service]. The [Unit] section gives
some details about the unit and contains description and dependency infor-
mation. In particular, this unit requires the dbus.socket unit as a dependency.

In a service unit such as this, you’ll find the details about the service in the
[Service] section, including how to prepare, start, and reload the service. You’ll
find a complete listing in the systemd.service(5) and systemd.exec(5) manual
pages, as well as in the discussion of process tracking in Section 6.3.5.

Many other unit configuration files are similarly straightforward. For
example, the service unit file sshd.service enables remote secure shell logins
by starting sshd.

The unit files you find on your system may differ slightly. In this example, you saw
that Fedora uses the name dbus-daemon.service, and Ubuntu uses dbus.service.
There may be changes in the actual files as well, but they are often superficial.

Variables

You'll often find variables inside unit files. Here’s a section from a different
unit file, this one for the secure shell that you’ll learn about in Chapter 10:

[Service]

EnvironmentFile=/etc/sysconfig/sshd
ExecStartPre=/usr/sbin/sshd-keygen
ExecStart=/usr/sbin/sshd -D $OPTIONS $CRYPTO POLICY
ExecReload=/bin/kill -HUP $MAINPID

Everything that starts with a dollar sign ($) is a variable. Although these
variables have the same syntax, their origins are different. The $0PTIONS and
$CRYPTO_POLICY options, which you can pass to sshd upon unit activation, are
defined in the file specified by the EnvironmentFile setting. In this particular
case, you can look at /etc/sysconfig/sshd to determine if the variables are set
and, if so, what their values are.

In comparison, $MAINPID contains the ID of the tracked process of the ser-
vice (see Section 6.3.5). Upon unit activation, systemd records and stores
this PID so that you can use it to manipulate a service-specific process later
on. The sshd.service unit file uses $MAINPID to send a hangup (HUP) signal
to sshd when you want to reload the configuration (this is a very common
technique for dealing with reloads and restarting Unix daemons).

Specifiers

A specifieris a variable-like feature often found in unit files. Specifiers start
with a percent sign (%). For example, the %n specifier is the current unit
name, and the %H specifier is the current hostname.

You can also use specifiers to create multiple copies of a unit from a
single unit file. One example is the set of getty processes that control the
login prompts on virtual consoles, such as ¢yl and ¢ty2. To use this feature,
add an @ symbol to the end of the unit name, before the dot in the unit
filename.

For example, the getty unit filename is getty@.service in most distribu-
tions, allowing for the dynamic creation of units, such as getty@ityl and
getty@ity2. Anything after the @ is called the instance. When you look at one
of these unit files, you may also see a %I or %i specifier. When activating a
service from a unit file with instances, systemd replaces the %I or %i specifier
with the instance to create the new service name.

How User Space Starts 143

144

Chapter 6

6.3.4 systemd Operation

You'll interact with systemd primarily through the systemctl command,
which allows you to activate and deactivate services, list status, reload the
configuration, and much more.

The most essential commands help you to obtain unit information. For
example, to view a list of active units on your system, issue a list-units com-
mand. (This is the default command for systemctl, so technically you don’t
need the list-units argument.)

$ systemctl list-units

The output format is typical of a Unix information-listing command.
For example, the header and the line for -.mount (the root filesystem) looks
like this:

UNIT LOAD ACTIVE SUB DESCRIPTION
-.mount loaded active mounted Root Mount

By default, systemctl list-units produces a lot of output, because a typi-
cal system has numerous active units, but it’s still an abridged form because
systemctl truncates any really large unit names. To see the full names of the
units, use the --full option, and to see all units (not just those that are active),
use the --all option.

A particularly useful systemctl operation is getting the status of a spe-
cific unit. For example, here’s a typical status command and some of its
output:

$ systemctl status sshd.service
- sshd.service - OpenBSD Secure Shell server

Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled; vendor
preset: enabled)

Active: active (running) since Fri 2021-04-16 08:15:41 EDT; 1 months 1 days
ago
Main PID: 1110 (sshd)

Tasks: 1 (limit: 4915)

CGroup: /system.slice/sshd.service

L—1110 /usr/sbin/sshd -D

A number of log messages may also follow this output. If you're used to
a traditional init system, you might be surprised by the amount of useful
information available from this one command. You get not only the state
of the unit but also the processes associated with the service, when the unit
started, and a number of log messages, if available.

The output for other unit types includes similar useful information; for
example, the output from mount units includes when the mount happened,
the exact command line used for it, and its exit status.

One interesting piece of the output is the control group (cgroup) name.
In the preceding example, the control group is /system.slice/sshd.service,
and the processes in the cgroup are shown below it. However, you may also

see control groups named starting with systemd:/system if the processes of
a unit (for example, a mount unit) have already terminated. You can view
systemd-related cgroups without the rest of the unit status with the systemd-
cgls command. You’ll learn more about how systemd uses cgroups in Section
6.3.5, and how cgroups work in Section 8.6.

The status command also displays only the most recent diagnostic log
messages for the unit. You can view all of a unit’s messages like this:

$ journalctl --unit=unit_name

You’ll learn much more about journalctl in Chapter 7.

Depending on your system and user configuration, you might need superuser privi-
leges to run journalctl.

How Jobs Relate to Starting, Stopping, and Reloading Units

To activate, deactivate, and restart units, you use the commands systemctl
start, systemctl stop, and systemctl restart. However, if you've changed a unit
configuration file, you can tell systemd to reload the file in one of two ways:

systemctl reload unit Reloads just the configuration for unit.
systemctl daemon-reload Reloads all unit configurations.
Requests to activate, reactivate, and restart units are called jobs in systemd,

and they are essentially unit state changes. You can check the current jobs
on a system with:

$ systemctl list-jobs

If a system has been up for some time, you can reasonably expect there
to be no active jobs because all activations required to start the system should
be complete. However, at boot time, you can sometimes log in fast enough
to see jobs for units that start very slowly. For example:

JOB UNIT TYPE STATE

1 graphical.target start waiting

2 multi-user.target start waiting
71 systemd-...nlevel.service start waiting
75 sm-client.service start waiting
76 sendmail.service start running
120 systemd-...ead-done.timer start waiting

In this case, job 76, the sendmail.service unit startup, is taking a really
long time. The other listed jobs are in a waiting state, most likely because
they’re all waiting for job 76. When sendmail.service finishes starting and is
fully active, job 76 will complete, the rest of the jobs will also complete, and
the job list will be empty.

How User Space Starts 145

146

Chapter 6

The term job can be confusing, especially because some other init systems use it to
refer to features that are more like systemd units. These jobs also have nothing to do
with the shell’s job control.

See Section 6.6 to learn how to shut down and reboot the system.

Adding Units to systemd

Adding units to systemd is primarily a matter of creating, then activating
and possibly enabling, unit files. You should normally put your own unit
files in the system configuration directory (/etc/systemd/system) so that you
won’t confuse them with anything that came with your distribution and so
that the distribution won’t overwrite them when you upgrade.

Because it’s easy to create target units that don’t actually do anything
or interfere with your system, give it a try. To create two targets, one with a
dependency on the other, follow these steps:

1. Create a unit file named testl.target in /etc/systemd/system:

[Unit]
Description=test 1

2. Create a test2.target file with a dependency on testl.target:

[Unit]
Description=test 2
Wants=test1.target

The Wants keyword here defines a dependency that causes testl.target to
activate when you activate lest2.target. Activate the test2.target unit to see it in
action:

systemctl start test2.target

3. Verify that both units are active:

systemctl status testi.target test2.target
- testi.target - test 1

Loaded: loaded (/etc/systemd/system/testi.target; static; vendor
preset: enabled)

Active: active since Tue 2019-05-28 14:45:00 EDT; 16s ago

May 28 14:45:00 duplex systemd[1]: Reached target test 1.

- test2.target - test 2

Loaded: loaded (/etc/systemd/system/test2.target; static; vendor
preset: enabled)

Active: active since Tue 2019-05-28 14:45:00 EDT; 17s ago

NOTE

4. Ifyour unit file has an [Install] section, you need to “enable” the unit
before activating it:

systemctl enable unit

The [Install] section is another way to create a dependency. We’ll look
at it (and dependencies as a whole) in more detail in Section 6.3.6.

Removing Units from systemd

To remove a unit, follow these steps:

1. Deactivate the unit if necessary:

systemctl stop unit

2. If the unit has an [Install] section, disable the unit to remove any sym-
bolic links created by the dependency system:

systemctl disable unit

You can then remove the unit file if you like.

Disabling a unit that is implicitly enabled (that is, does not have an [Install] section)
has no effect.

6.3.5 systemd Process Tracking and Synchronization

systemd wants a reasonable amount of information and control over every
process it starts. This has been difficult historically. A service can start in
different ways; it could fork new instances of itself or even daemonize and
detach itself from the original process. There’s also no telling how many
subprocesses the server can spawn.

In order to manage activated units easily, systemd uses the previously
mentioned cgroups, a Linux kernel feature that allows for finer tracking of
a process hierarchy. The use of cgroups also helps minimize the work that
a package developer or administrator needs to do in order to create a work-
ing unit file. In systemd, you don’t have to worry about accounting for every
possible startup behavior; all you need to know is whether a service startup
process forks. Use the Type option in your service unit file to indicate
startup behavior. There are two basic startup styles:

Type=simple The service process doesn’t fork and terminate; it remains
the main service process.

Type=forking The service forks, and systemd expects the original ser-
vice process to terminate. Upon this termination, systemd assumes the
service is ready.

How User Space Starts 147

148

Chapter 6

The Type=simple option doesn’t account for the fact that a service may
take some time to initiate, and as a result systemd doesn’t know when to start
any dependent units that absolutely require such a service to be ready. One
way to deal with this is to use delayed startup (see Section 6.3.7). However,
some Type startup styles can indicate that the service itself will notify systemd
when it’s ready:

Type=notify When ready, the service sends a notification specific to
systemd with a special function call.

Type=dbus When ready, the service registers itself on the D-Bus
(Desktop Bus).

Another service startup style is specified with Type=oneshot; here the service
process terminates completely with no child processes after starting. It’s like
Type=simple, except that systemd does not consider the service to be started
until the service process terminates. Any strict dependencies (which you’ll see
soon) will not start until that termination. A service using Type=oneshot also
gets a default RemainAfterExit=yes directive so that systemd regards a service as
active even after its processes terminate.

A final option is Type=idle. This works like the simple style, but it instructs
systemd not to start the service until all active jobs finish. The idea here is
just to delay a service start until other services have started to keep services
from stepping on one another’s output. Remember, once a service has
started, the systemd job that started it terminates, so waiting for all other
jobs to finish ensures that nothing else is starting.

If you're interested in how cgroups work, we’ll explore them in more
detail in Section 8.6.

6.3.6 systemd Dependencies

A flexible system for boot-time and operational dependencies requires
some degree of complexity, because overly strict rules can cause poor sys-
tem performance and instability. For example, say you want to display a
login prompt after starting a database server, so you define a strict depen-
dency from the login prompt to the database server. This means if the data-
base server fails, the login prompt will also fail, and you won’t even be able
to log in to your machine to fix the issue!

Unix boot-time tasks are fairly fault tolerant and can often fail without
causing serious problems for standard services. For example, if you removed
a system’s data disk but left its /etc/fstab entry (or mount unit in systemd), the
boot-time filesystem mount would fail. Though this failure might affect
application servers (such as web servers), it typically wouldn’t affect stan-
dard system operation.

To accommodate the need for flexibility and fault tolerance, systemd
offers several dependency types and styles. Let’s first look at the basic types,
labeled by their keyword syntax:

Requires Strict dependencies. When activating a unit with a Requires
dependency unit, systemd attempts to activate the dependency unit. If
the dependency unit fails, systemd also deactivates the dependent unit.

Wants Dependencies for activation only. Upon activating a unit, sys-
temd activates the unit’s Wants dependencies, but it doesn’t care if those
dependencies fail.

Requisite Units that must already be active. Before activating a
unit with a Requisite dependency, systemd first checks the status of the
dependency. If the dependency hasn’t been activated, systemd fails on
activation of the unit with the dependency.

Conflicts Negative dependencies. When activating a unit with a
Conflict dependency, systemd automatically deactivates the opposing
dependency if it’s active. Simultaneous activation of conflicting units
fails.

The Wants dependency type is especially significant because it doesn’t
propagate failures to other units. The systemd.service(5) manual page
states that this is how you should specify dependencies if possible, and it’s
easy to see why. This behavior produces a much more robust system, giving
you the benefit of a traditional init, where the failure of an earlier startup
component doesn’t necessarily prohibit later components from starting.

You can view a unit’s dependencies with the systemctl command, as long
as you specify a type of dependency, such as Wants or Requires:

systemctl show -p type unit

Ordering

So far, the dependency syntax you've seen hasn’t explicitly specified order.
For example, activating most service units with Requires or Wants dependencies
causes these units to start at the same time. This is optimal, because you want
to start as many services as possible as quickly as possible to reduce boot time.
However, there are situations when one unit must start after another. For
instance, in the system that Figure 6-1 is based on, the default.target unit is set
to start after multi-user.target (this order distinction is not shown in the figure).

To activate units in a particular order, use the following dependency
modifiers:

Before The current unit will activate before the listed unit(s). For
example, if Before=bar.target appears in foo.target, systemd activates
Joo.target before bar.target.

After The current unit activates after the listed unit(s).

When you use ordering, systemd waits until a unit has an active status
before activating its dependent units.

Default and Implicit Dependencies

As you explore dependencies (especially with systemd-analyze), you might
start to notice that some units acquire dependencies that aren’t explic-
itly stated in unit files or other visible mechanisms. You’re most likely to
encounter this in target units with Wants dependencies—you’ll find that

How User Space Starts 149

150

Chapter 6

systemd adds an After modifier alongside any unit listed as a Wants depen-
dency. These additional dependencies are internal to systemd, calculated
at boot time, and not stored in configuration files.

The added After modifier is called a default dependency, an automatic
addition to the unit configuration meant to avoid common mistakes and
keep unit files small. These dependencies vary according to the type of
unit. For example, systemd doesn’t add the same default dependencies for
target units as it does for service units. These differences are listed in the
DEFAULT DEPENDENCIES sections of the unit configuration manual
pages, such as systemd.service(5) and systemd.target(5).

You can disable a default dependency in a unit by adding
DefaultDependencies=no to its configuration file.

Conditional Dependencies

You can use several conditional dependency parameters to test various operat-
ing system states rather than systemd units. For example:

ConditionPathExists=p True if the (file) path p exists in the system.
ConditionPathIsDirectory=p True if pis a directory.

ConditionFileNotEmpty=p True if pis a file and it’s not zero-length.

If a conditional dependency in a unit is false when systemd tries to acti-
vate the unit, the unit does not activate, although this applies only to the
unit in which it appears. That is, if you activate a unit that has a conditional
dependency and some unit dependencies, systemd attempts to activate those
unit dependencies regardless of whether the condition is true or false.

Other dependencies are primarily variations on the preceding ones.
For example, the RequiresOverridable dependency is just like Requires when
running normally, but it acts like a Wants dependency if a unit is manually
activated. For a full list, see the systemd.unit(5) manual page.

The [Install] Section and Enabling Units

So far, we’ve been looking at how to define dependencies in a dependent
unit’s configuration file. It’s also possible to do this “in reverse”—that is, by
specifying the dependent unit in a dependency’s unit file. You can do this by
adding a WantedBy or RequiredBy parameter in the [Install] section. This mecha-
nism allows you to alter when a unit should start without modifying additional
configuration files (for example, when you’d rather not edit a system unit file).

To see how this works, consider the example units back in Section 6.3.4.
We had two units, testl.target and test2.target, with test2.target having a Wants
dependency on testl.target. We can change them so that testl.target looks
like this:

[unit]
Description=test 1

[Install]
WantedBy=test2.target

NOTE

And test2.target is as follows:

[Unit]
Description=test 2

Because you now have a unit with an [Install] section, you need to
enable the unit with systemctl before you can start it. Here’s how that works
with testl.target:

systemctl enable testi.target
Created symlink /etc/systemd/system/test2.target.wants/testi.target » /etc/
systemd/system/test1.target.

Notice the output here—the effect of enabling a unit is to create a
symbolic link in a .wants subdirectory corresponding to the dependent unit
(test2.target in this case). You can now start both units at the same time with
systemctl start test2.target because the dependency is in place.

Enabling a unit does not activate it.

To disable the unit (and remove the symbolic link), use systemctl as
follows:

systemctl disable testi.target
Removed /etc/systemd/system/test2.target.wants/test1.target.

The two units in this example also give you a chance to experiment
with different startup scenarios. For example, see what happens when
you try to start only testl.target, or when you try to start fest2.target without
enabling festl.target. Or, try changing WantedBy to RequiredBy. (Remember,
you can check the status of a unit with systemctl status.)

During normal operation, systemd ignores the [Install] section in a
unit but notes its presence and, by default, considers the unit to be dis-
abled. Enabling a unit survives reboots.

The [Install] section is usually responsible for the .wants and .requires
directories in the system configuration directory (/etc/systemd/system).
However, the unit configuration directory ([/usr]/lib/systemd/system) also con-
tains .wants directories, and you may also add links that don’t correspond
to [Install] sections in the unit files. These manual additions are a simple
way to add a dependency without modifying a unit file that may be over-
written in the future (by a software upgrade, for instance), but they’re not
particularly encouraged because a manual addition is difficult to trace.

6.3.7 systemd On-Demand and Resource-Parallelized Startup

One of systemd’s features is the ability to delay a unit startup until it is abso-
lutely needed. The setup typically works like this:

1. You create a systemd unit (call it Unit A) for the system service you’d
like to provide.

How User Space Starts 151

152

Chapter 6

2. You identify a system resource, such as a network port/socket, file, or
device, that Unit A uses to offer its services.

3. You create another systemd unit, Unit R, to represent that resource.
These units are classified into types, such as socket units, path units,
and device units.

4. You define the relationship between Unit A and Unit R. Normally, this
is implicit based on the units’ names, but it can also be explicit, as we’ll
see shortly.

Once in place, the operation proceeds as follows:

1. Upon activation of Unit R, systemd monitors the resource.

2. When anything tries to access the resource, systemd blocks the
resource, and the input to the resource is buffered.

3. systemd activates Unit A.

When ready, the service from Unit A takes control of the resource,
reads the buffered input, and runs normally.

There are a few concerns here:

¢ You must make sure that your resource unit covers every resource that
the service provides. This normally isn’t a problem, because most ser-
vices have just one point of access.

¢ You need to make sure your resource unit is tied to the service unit that
it represents. This can be implicit or explicit, and in some cases, many
options represent different ways for systemd to perform the handoff to
the service unit.

e Not all servers know how to interface with the resource units systemd
can provide.

If you already know what traditional utilities like inetd, xinetd, and
automount do, you’'ll see many similarities. Indeed, the concept is nothing
new; systemd even includes support for automount units.

An Example Socket Unit and Service

Let’s look at an example, a simple network echo service. This is somewhat
advanced material, and you might not fully understand it until you've read
the discussion of TCP, ports, and listening in Chapter 9 and sockets in
Chapter 10, but you should be able to get the basic idea.

The idea of an echo service is to repeat anything that a network client
sends after connecting; ours will listen on TCP port 22222. We’ll start building
it with a socket unit to represent the port, as shown in the following echo.socket
unit file:

[Unit]
Description=echo socket

[Socket]
ListenStream=22222
Accept=true

Note that there’s no mention of the service unit that this socket sup-
ports inside the unit file. So, what is that corresponding service unit file?

Its name is echo@.service. The link is established by naming convention;
if a service unit file has the same prefix as a .socket file (in this case, echo),
systemd knows to activate that service unit when there’s activity on the
socket unit. In this case, systemd creates an instance of echo@.service when
there’s activity on echo.socket. Here’s the echo@.service unit file:

[Unit]
Description=echo service

[Service]
ExecStart=/bin/cat
StandardInput=socket

If you don’t like the implicit activation of units based on the prefixes, or you need to
link units with different prefixes, you can use an explicit option in the unit defining
your resource. For example, use Socket=bar.socket inside foo.service to have
bar.socket hand its socket to foo.service.

To get this example unit running, you need to start the echo.socket unit:

systemctl start echo.socket

Now you can test the service by connecting to your local TCP port 22222
with a utility such as telnet. The service repeats what you enter; here’s an
example interaction:

$ telnet localhost 22222
Trying 127.0.0.1...
Connected to localhost.
Escape character is '~]'.
Hi there.

Hi there.

When you’re bored with this and want to get back to your shell, press
CTRL-] on aline by itself and then press CTRL-D. To stop the service, stop
the socket unit like so:

systemctl stop echo.socket

telnet may not be installed by default on your distribution.

How User Space Starts 153

154

Chapter 6

Instances and Handoff

Because the echo@.service unit supports multiple simultaneous instances,
there’s an @in the name (recall that the @ specifier signifies parameter-
ization). Why would you want multiple instances? Say you have more than
one network client connecting to the service at the same time, and you
want each connection to have its own instance. In this case, the service
unit must support multiple instances because we included the Accept=true
option in echo.socket. That option instructs systemd not only to listen on
the port, but also to accept incoming connections on behalf of the service
unit and pass it to them, creating a separate instance for each connection.
Each instance reads data from the connection as standard input, but it
doesn’t necessarily need to know that the data is coming from a network
connection.

Most network connections require more flexibility than just a simple gateway to stan-
dard input and output, so don’t expect to be able to create complex network services
with a service unit file like the echo@.service unit file shown here.

If a service unit can do the work of accepting a connection, don’t put
an @in its unit filename, and don’t put Accept=true in the socket unit. In this
case, the service unit takes complete control of the socket from systemd,
which in turn does not attempt to listen on the network port again until the
service unit finishes.

The many different resources and options for handoff to service units
make it difficult to provide a categorical summary. Not only that, but the
documentation for the options is spread out over several manual pages.

For the resource-oriented units, check systemd.socket(5), systemd.path(b),
and systemd.device(5). One document that’s often overlooked for service
units is systemd.exec(5), which contains information about how the service
unit can expect to receive a resource upon activation.

Boot Optimization with Auxiliary Units

An overall goal of systemd is to simplify dependency order and speed up
boot time. Resource units such as socket units provide a way to do this that’s
similar to on-demand startup. We’ll still have a service unit and an auxiliary
unit representing the service unit’s offered resource, except that in this case,
systemd starts the service unit as soon as it activates the auxiliary unit rather
than waiting around for a request.

The reason for this scheme is that essential boot-time service units such
as systemd-journald.service take some time to start, and many other units
depend on them. However, systemd can offer the essential resource of a
unit (such as a socket unit) very quickly, and then it can immediately acti-
vate not only the essential unit but also any units that depend on it. Once
the essential unit is ready, it takes control of the resource.

Figure 6-2 shows how this might work in a traditional sequential system.
In this boot timeline, Service E provides an essential Resource R. Services
A, B, and C depend on this resource (but not on each other) and must

wait until Service E has started. Because the system will not start a new ser-
vice until it’s done starting the preceding one, it takes quite a long time to
get around to starting Service C.

Service E

Starting |Starteo|; Resource R ready

Service A
|Storﬁng | Started
Service B
| Starting | Started

Service C

Figure 6-2: Sequential boot timeline with a resource dependency

Figure 6-3 shows a possible equivalent systemd boot configuration.
The services are represented by Units A, B, C, and E, with a new Unit R
representing the resource that Unit E provides. Because systemd can pro-
vide an interface for Unit R while Unit E starts, Units A, B, C, and E can
all be started at the same time. When ready, Unit E takes over for Unit R.
An interesting point here is that Unit A, B, or C may not need to access the
resource that Unit R provides before finishing startup. What we’re doing
is providing them with the option to start accessing the resource as soon as
possible.

Unit R

Unit E
| Starting | Started; takes over for Unit R

Unit A
| Starting | Started

Unit B
| Starting | Started

Unit C
| Starting Started

\AAA

Figure 6-3: systemd boot timeline with a resource unit

How User Space Starts 155

156

6.4

Chapter 6

When you parallelize startup like this, there’s a chance that your system will slow
down temporarily due to a large number of units starting at once.

The takeaway is that, although you’re not creating an on-demand
unit startup in this case, youre using the same features that make on-
demand startup possible. For common real-world examples, see the
journald and D-Bus configuration units on a machine running systemd;
they’re very likely to be parallelized in this way.

6.3.8 systemd Auvxiliary Components

As systemd has grown in popularity, it has grown to include support for a

few tasks not related to startup and service management, both directly and

through auxiliary compatibility layers. You may notice the numerous pro-

grams in /lib/systemd; these are the executables related to those functions.
Here are a few specific system services:

udevd You learned about this in Chapter 3; it’s part of systemd.

journald A logging service that handles a few different logging mech-
anisms, including the traditional Unix syslog service. You’ll read more
about this in Chapter 7.

resolved A name service caching daemon for DNS; you’ll learn about
that in Chapter 9.

All of the executables for these services are prefixed with systemd-. For
example, the systemd-integrated udevd is called systemd-udevd.

If you dig deeper, you'll find that some of these programs are relatively
simple wrappers. Their function is to run standard system utilities and
notify systemd of the results. One example is systemd-fsck.

If you see a program in /lib/systemd that you can’t identify, check for a
manual page. There’s a good chance that it will describe not only the utility
but also the type of unit it’s meant to augment.

System V Runlevels

Now that you've learned about systemd and how it works, let’s shift gears
and look at some aspects of the traditional System V init. At any given
time on a Linux system, a certain base set of processes (such as crond and
udevd) is running. In System V init, this state of the machine is called its
runlevel, which is denoted by a number from 0 through 6. A system spends
most of its time in a single runlevel, but when you shut down the machine,
init switches to a different runlevel in order to terminate the system services
in an orderly fashion and tell the kernel to stop.

You can check your system’s runlevel with the who -r command like this:

$ who -r
run-level 5 2019-01-27 16:43

6.5

This output tells us that the current runlevel is 5, as well as the date and
time that the runlevel was established.

Runlevels serve various purposes, but the most common one is to
distinguish between system startup, shutdown, single-user mode, and con-
sole mode states. For example, most systems traditionally used runlevels 2
through 4 for the text console; a runlevel of 5 means that the system starts
a GUI login.

But runlevels are becoming a thing of the past. Even though systemd
supports them, it considers runlevels obsolete as end states for the system,
preferring target units instead. To systemd, runlevels exist primarily to start
services that support only the System V init scripts.

System V init

The System V init implementation is among the oldest used on Linux; its
core idea is to support an orderly bootup to different runlevels with a care-
fully constructed startup sequence. System V init is now uncommon on
most server and desktop installations, but you may encounter it in versions
of RHEL prior to version 7.0, as well as in embedded Linux environments,
such as routers and phones. In addition, some older packages may only
provide startup scripts designed for System V init; systemd can handle those
with a compatibility mode that we’ll discuss in Section 6.5.5. We’ll look at
the basics here, but keep in mind that you might not actually encounter
anything covered in this section.

A typical System V init installation has two components: a central con-
figuration file and a large set of boot scripts augmented by a symbolic link
farm. The configuration file /etc/inittab is where it all starts. If you have
System V init, look for a line like the following in your inittab file:

id:5:initdefault:

This indicates that the default runlevel is 5.
All lines in inittab take the following form, with four fields separated by
colons in this order:

A unique identifier (a short string, such as id in the previous example).
2. The applicable runlevel number(s).

The action that init should take (default runlevel to 5 in the previous
example).

4. A command to execute (optional).

To see how commands work in an inittab file, consider this line:

15:5:wait:/etc/rc.d/xc 5

This particular line is important because it triggers most of the system
configuration and services. Here, the wait action determines when and how
System V init runs the command: run /etc/rc.d/rc 5 once when entering

How User Space Starts 157

158

NOTE

Chapter 6

runlevel 5 and then wait for this command to finish before doing anything
else. The rc 5 command executes anything in /etc/rc5.d that starts with a
number (in numeric order). We’ll cover this in more detail shortly.

The following are some of the most common inittab actions in addition
to initdefault and wait:

respawn
The respauwn action tells init to run the command that follows and, if the
command finishes executing, to run it again. You're likely to see some-
thing like this in an ¢nittabd file:

1:2345:respawn:/sbin/mingetty tty1

The getty programs provide login prompts. The preceding line is used
for the first virtual console (/dev/ttyl), which is the one you see when
you press ALT-F1 or CTRL-ALT-F1 (see Section 3.4.7). The respawn
action brings the login prompt back after you log out.

ctrlaltdel
The ctrlaltdel action controls what the system does when you press
CTRL-ALT-DEL on a virtual console. On most systems, this is some
sort of reboot command using the shutdown command (discussed in
Section 6.6).

sysinit
The sysinit action is the first thing that init should run when starting,
before entering any runlevels.

For more available actions, see the inittab(5) manual page.

6.5.1 System V init: Startup Command Sequence

Now let’s look at how System V init starts system services, just before it lets
you log in. Recall this inittab line from earlier:

15:5:wait:/etc/rc.d/rc 5

This short line triggers many other programs. In fact, rc stands for run
commands, which many people refer to as scripts, programs, or services. But
where are these commands?

The 5 in this line tells us that we’re talking about runlevel 5. The com-
mands are probably in either /etc/rc.d/rc5.d or /fetc/rc5.d. (Runlevel 1 uses
rcl.d, runlevel 2 uses 7¢2.d, and so on.) For example, you might find the fol-
lowing items in the r¢5.d directory:

S10sysklogd S20ppp S99gpm
S12kerneld S25netstd nfs S99httpd
Si5netstd_init S30netstd _misc S99rmnologin

S18netbase S45pcmcia S99sshd
S20acct S89atd
S20logoutd S89cron

The rc 5 command starts programs in the r¢5.d directory by executing
the following commands in this sequence:

S10sysklogd start
S12kerneld start
S15netstd init start
S18netbase start
--snip--

S99sshd start

Notice the start argument in each command. The capital Sin a com-
mand name means that the command should run in start mode, and the
number (00 through 99) determines where in the sequence rc starts the
command. The rc*d commands are usually shell scripts that start programs
in /sbin or /usr/sbin.

Normally, you can figure out what a particular command does by view-
ing the script with less or another pager program.

Some rc*.d directories contain commands that start with K (for “kill,” or stop mode).
In this case, rc runs the command with the stop argument instead of start. You'll
most likely encounter K commands in runlevels that shut down the system.

You can run these commands by hand; however, normally you’ll want
to do so through the init.d directory instead of the rc*d directories, which
we’ll look at next.

6.5.2 The System V init Link Farm

The contents of the rc*d directories are actually symbolic links to files in yet
another directory, init.d. If your goal is to interact with, add, delete, or mod-
ify services in the rc*.d directories, you need to understand these symbolic
links. A long listing of a directory such as r¢5.d reveals a structure like this:

lrwxrwxrwx . . . S10sysklogd -> ../init.d/sysklogd
lrwxrwxrwx . . . Si2kerneld -> ../init.d/kerneld
lrwxrwxxwx . . . SiSnetstd_init -> ../init.d/netstd_init
lrwxrwxrwx . . . Si18netbase -> ../init.d/netbase
--snip--

lrwxrwxrwx . . . S99httpd -> ../init.d/httpd

--snip--

Alarge number of symbolic links across several subdirectories like this
is called a link farm. Linux distributions contain these links so that they can
use the same startup scripts for all runlevels. This is a convention, not a
requirement, but it simplifies organization.

How User Space Starts 159

160

Chapter 6

Starting and Stopping Services

To start and stop services by hand, use the script in the ini.d directory. For
example, one way to start the httpd web server program manually is to run
init.d/httpd start. Similarly, to kill a running service, you can use the stop
argument (httpd stop, for instance).

Modifying the Boot Sequence

Changing the boot sequence in System V init is normally done by modify-
ing the link farm. The most common change is to prevent one of the com-
mands in the init.d directory from running in a particular runlevel. You
have to be careful about how you do this, however. For example, you might
consider removing the symbolic link in the appropriate rc*.d directory. But
if you ever need to put the link back, you might have trouble remembering
its exact name. One of the best approaches is to add an underscore (_) at
the beginning of the link name, like this:

mv S99httpd _S99httpd

This change causes rc to ignore _S99hitpd because the filename no lon-
ger starts with S or K, but the original name still indicates its purpose.

To add a service, create a script like those in the init.d directory and
then create a symbolic link in the correct r¢c*.d directory. The easiest way
to do this is to copy and modify one of the scripts already in init.d that you
understand (see Chapter 11 for more information on shell scripts).

When adding a service, choose an appropriate place in the boot
sequence to start it. If the service starts too soon, it may not work due to a
dependency on some other service. For nonessential services, most systems
administrators prefer numbers in the 90s, which puts the services after
most of the services that came with the system.

6.5.3 run-parts

The mechanism that System V init uses to run the init.d scripts has found
its way into many Linux systems, regardless of whether they use System V
init. It’s a utility called run-parts, and the only thing it does is run a bunch
of executable programs in a given directory, in some kind of predictable
order. You can think of run-parts as almost like a person who enters the

1s command in some directory and then just runs whatever programs are
listed in the output.

The default behavior is to run all programs in a directory, but you often
have the option to select certain programs and ignore others. In some dis-
tributions, you don’t need much control over the programs that run. For
example, Fedora ships with a very simple run-parts utility.

Other distributions, such as Debian and Ubuntu, have a more compli-
cated run-parts program. Their features include the ability to run programs
based on a regular expression (for example, using the S[0-9]{2} expression

for running all “start” scripts in an /etc/init.d runlevel directory) and to pass
arguments to the programs. These capabilities allow you to start and stop
System V runlevels with a single command.

You don’t really need to understand the details of how to use run-parts;
in fact, most people don’t know that it even exists. The main things to
remember are that it shows up in scripts from time to time and that it exists
solely to run the programs in a given directory.

6.5.4 System V init Control

Occasionally, you'll need to give init a little kick to tell it to switch runlevels,
to reread its configuration, or to shut down the system. To control System V
init, you use telinit. For example, to switch to runlevel 3, enter:

telinit 3

When switching runlevels, init tries to kill off any processes not in the
inittab file for the new runlevel, so be careful when changing runlevels.

When you need to add or remove jobs, or make any other change to the
inittab file, you must tell init about the change and have it reload the file.
The telinit command for this is:

telinit q

You can also use telinit s to switch to single-user mode.

6.5.5 systemd System V Compatibility

One feature that sets systemd apart from other newer-generation init sys-
tems is that it tries to do a more complete job of tracking services started by
System V—compatible init scripts. It works like this:

First, systemd activates runlevel<N>.target, where Nis the runlevel.

2. For each symbolic link in /etc/rc<N>.d, systemd identifies the script in
Jetc/init.d.

3. systemd associates the script name with a service unit (for example,
/etc/init.d/foo would be foo.service).

4. systemd activates the service unit and runs the script with either a start
or stop argument, based on its name in r¢<N>.d.

5. systemd attempts to associate any processes from the script with the
service unit.

Because systemd makes the association with a service unit name, you
can use systemctl to restart the service or view its status. But don’t expect
any miracles from System V compatibility mode; it still must run the init
scripts serially, for example.

How User Space Starts 161

162

6.6

Chapter 6

Shutting Down Your System

init controls how the system shuts down and reboots. The commands to
shut down the system are the same regardless of which version of init you
run. The proper way to shut down a Linux machine is to use the shutdown
command.

There are two basic ways to use shutdown. If you halt the system, it shuts
the machine down and keeps it down. To make the machine halt immedi-
ately, run this:

shutdown -h now

On most machines and versions of Linux, a halt cuts the power to the
machine. You can also reboot the machine. For a reboot, use -r instead of -h.

The shutdown process takes several seconds. You should avoid resetting
or powering off a machine during a shutdown.

In the preceding example, now is the time to shut down. Including a
time argument is mandatory, but there are many ways to specify it. For
example, if you want the machine to shut down sometime in the future, you
can use +n, where n is the number of minutes shutdown should wait before
proceeding. See the shutdown(8) manual page for other options.

To make the system reboot in 10 minutes, enter:

shutdown -r +10

On Linux, shutdown notifies anyone logged on that the machine is going
down, but it does little real work. If you specity a time other than now, the
shutdown command creates a file called /et¢/nologin. When this file is present,
the system prohibits logins by anyone except the superuser.

When the system shutdown time finally arrives, shutdown tells init to begin
the shutdown process. On systemd, this means activating the shutdown units,
and on System V init, it means changing the runlevel to 0 (halt) or 6 (reboot).
Regardless of the init implementation or configuration, the procedure gener-
ally goes like this:

1. init asks every process to shut down cleanly.

2. Ifaprocess doesn’t respond after a while, init kills it, first trying a
TERM signal.

3. If the TERM signal doesn’t work, init uses the KILL signal on any
stragglers.

4. The system locks system files into place and makes other preparations
for shutdown.

5. The system unmounts all filesystems other than the root.
6. The system remounts the root filesystem read-only.

7. The system writes all buffered data out to the filesystem with the sync
program.

6.7

8. The final step is to tell the kernel to reboot or stop with the reboot(2)
system call. This can be done by init or an auxiliary program, such as
reboot, halt, or poweroff.

The reboot and halt programs behave differently depending on how
they’re called, which may cause confusion. By default, these programs call
shutdown with the -r or -h options. However, if the system is already at a halt
or reboot runlevel, the programs tell the kernel to shut itself off immedi-
ately. If you really want to shut down your machine in a hurry, regardless of
any potential damage from a disorderly shutdown, use the -f (force) option.

The Initial RAM Filesystem

The Linux boot process is, for the most part, fairly straightforward. However,
one component has always been somewhat confounding: initramfs, or the
initial RAM filesystem. Think of it as a little user-space wedge that goes in
front of the normal user mode start. But first, let’s talk about why it exists.

The problem stems from the availability of many different kinds of stor-
age hardware. Remember, the Linux kernel does not talk to the PC BIOS
interface or EFI to get data from disks, so in order to mount its root file-
system, it needs driver support for the underlying storage mechanism. For
example, if the root is on a RAID array connected to a third-party control-
ler, the kernel needs the driver for that controller first. Unfortunately, there
are so many storage controller drivers that distributions can’t include all
of them in their kernels, so many drivers are shipped as loadable modules.
But loadable modules are files, and if your kernel doesn’t have a filesystem
mounted in the first place, it can’t load the driver modules that it needs.

The workaround is to gather a small collection of kernel driver mod-
ules along with a few other utilities into an archive. The boot loader loads
this archive into memory before running the kernel. Upon start, the kernel
reads the contents of the archive into a temporary RAM filesystem (the init-
ramfs), mounts it at / and performs the user-mode handoff to the init on
the initramfs. Then, the utilities included in the initramfs allow the kernel
to load the necessary driver modules for the real root filesystem. Finally, the
utilities mount the real root filesystem and start the true init.

Implementations vary and are ever-evolving. On some distributions,
the init on the initramfs is a fairly simple shell script that starts a udevd to
load drivers, and then mounts the real root and executes the init there. On
distributions that use systemd, you’ll typically see an entire systemd instal-
lation there with no unit configuration files and just a few udevd configura-
tion files.

One basic characteristic of the initial RAM filesystem that has (so far)
remained unchanged since its inception is the ability to bypass it if you
don’t need it. That is, if your kernel has all the drivers it needs to mount
your root filesystem, you can omit the initial RAM filesystem in your boot
loader configuration. When successful, eliminating the initial RAM file-
system slightly shortens boot time. Try it yourself at boot time by using the

How User Space Starts 163

164

6.8

Chapter 6

GRUB menu editor to remove the initrd line. (It’s best not to experiment
by changing the GRUB configuration file, as you can make a mistake that
will be difficult to repair.) It has gradually become a little more difficult to
bypass the initial RAM filesystem because features such as mount-by-UUID
may not be available with generic distribution kernels.

You can check the contents of your initial RAM filesystem, but you’ll
need to do a little bit of detective work. Most systems now use archives cre-
ated by mkinitramfs that you can unpack with unmkinitramfs. Others might be
older compressed cpio archives (see the cpio(l) manual page).

One particular piece of interest is the “pivot” near the very end of
the init process on the initial RAM filesystem. This part is responsible for
removing the contents of the temporary filesystem (to save memory) and
permanently switch to the real root.

You won’t typically create your own initial RAM filesystem, as it’s a
painstaking process. There are a number of utilities for creating initial
RAM filesystem images, and your distribution likely comes with one. Two of
the most common are mkinitramfs and dracut.

The term initial RAM filesystem (initramfs) refers to the implementation that uses
the cpio archive as the source of the temporary filesystem. There’s an older version called
theinitial RAM disk, orinitrd, that uses a disk image as the basis of the temporary
filesystem. This has fallen into disuse because it’s much easier to maintain a cpio
archive. However, you'll often see the term initrd used to refer to a cpio-based initial
RAM filesystem. Often, the filenames and configuration files still contain initrd.

Emergency Booting and Single-User Mode

When something goes wrong with the system, your first recourse is usually
to boot the system with a distribution’s “live” image or with a dedicated
rescue image, such as SystemRescueCD, that you can put on removable
media. A live image is simply a Linux system that can boot and run without
an installation process; most distributions’ installation images double as live
images. Common tasks for fixing a system include the following:

e Checking filesystems after a system crash.
e Resetting a forgotten password.
¢ Fixing problems in critical files, such as /etc/fstab and /etc/passwd.

¢ Restoring from backups after a system crash.

Another option for booting quickly to a usable state is single-user mode.
The idea is that the system quickly boots to a root shell instead of going
through the whole mess of services. In the System V init, single-user mode
is usually runlevel 1. In systemd, it’s represented by rescue.target. You nor-
mally enter the mode with the -s parameter to the boot loader. You may
need to type the root password to enter single-user mode.

6.9

The biggest problem with single-user mode is that it doesn’t offer many
amenities. The network almost certainly won’t be available (and if it is, it
will be hard to use), you won’t have a GUI, and your terminal may not even
work correctly. For this reason, live images are nearly always considered
preferable.

Looking Forward

You've now seen the kernel and user-space startup phases of a Linux system,
and how systemd tracks services once they’ve started. Next we’ll go a little
deeper into user space. There are two areas to explore, starting with a num-
ber of system configuration files that all Linux programs use when interact-
ing with certain elements of user space. Then we’ll see essential services
that systemd starts.

How User Space Starts 165

SYSTEM CONFIGURATION:
LOGGING, SYSTEM TIME, BATCH
JOBS, AND USERS

When you first look in the /etc directory to

explore your system’s configuration, you
might feel a bit overwhelmed. The good
news is that although most of the files you see

affect a system’s operations to some extent, only a few
are fundamental.

This chapter covers the parts of the system that make the infrastructure
discussed in Chapter 4 available to the user-space software that we normally
interact with, such as the tools covered in Chapter 2. In particular, we’ll
look at the following:

e System logging

e Configuration files that the system libraries access to get server and
user information

168

7.1

Chapter 7

e Afew selected server programs (sometimes called daemons) that run
when the system boots

e Configuration utilities that can be used to tweak the server programs
and configuration files

e Time configuration

e Periodic task scheduling

The widespread use of systemd has reduced the number of basic, inde-
pendent daemons found on a typical Linux system. One example is the sys-
tem logging (syslogd) daemon, whose functionality is now largely provided
by a daemon built into systemd (journald). Still, a few traditional daemons
remain, such as crond and atd.

As in previous chapters, this chapter includes virtually no networking
material because the network is a separate building block of the system. In
Chapter 9, you’ll see where the network fits in.

System Logging

Most system programs write their diagnostic output as messages to the syslog
service. The traditional syslogd daemon performs this service by waiting
for messages and, upon receiving one, sending it to an appropriate chan-
nel, such as a file or a database. On most contemporary systems, journald
(which comes with systemd) does most of the work. Though we’ll concen-
trate on journald in this book, we’ll also cover many aspects of the tradi-
tional syslog.

The system logger is one of the most important parts of the system.
When something goes wrong and you don’t know where to start, it’s always
wise to check the log. If you have journald, you’ll do this with the journalctl
command, which we’ll cover in Section 7.1.2. On older systems, you’ll need
to check the files themselves. In either case, log messages look like this:

Aug 19 17:59:48 duplex sshd[484]: Server listening on 0.0.0.0 port 22.

A'log message typically contains important information such as the pro-
cess name, process ID, and timestamp. There can also be two other fields:
the facility (a general category) and severity (how urgent the message is).
We’ll discuss those in more detail later.

Understanding logging in a Linux system can be somewhat chal-
lenging due to varied combinations of older and newer software compo-
nents. Some distributions, such as Fedora, have moved to a journald-only
default, while others run a version of the older syslogd (such as rsyslogd)
alongside journald. Older distributions and some specialized systems may
not use systemd at all and have only one of the syslogd versions. In addi-
tion, some software systems bypass standardized logging altogether and
write their own.

7.1.1 Checking Your Log Setup

You should inspect your own system to see what sort of logging is installed.
Here’s how:

1. Check for journald, which you almost certainly have if you’re running
systemd. Although you can look for journald in a process listing, the
easiest way is to simply run journalctl. If journald is active on your sys-
tem, you'll get a paged list of log messages.

2. Check for rsyslogd. Look for rsyslogd in a process listing, and look for
/etc/rsyslog.conf.

3. Ifyou don’t have rsyslogd, check for syslog-ng (another version of syslogd)
by looking for a directory called /etc/syslog-ng.

Continue your tour by looking in /var/log for logfiles. If you have a ver-
sion of syslogd, this directory should contain many files, most created by
your syslog daemon. However, there will be a few files here that are main-
tained by other services; two examples are wtmp and lastlog, the logfiles that
utilities such as last and lastlog access in order to get login records.

In addition, there may be further subdirectories in /var/log containing
logs. These nearly always come from other services. One of them, /var/log/
journal, is where journald stores its (binary) logfiles.

7.1.2 Searching and Monitoring Logs

Unless you have a system without journald or you're searching a logfile
maintained by some other utility, you’ll look through the journal. With no
arguments, the journalctl access tool is like a fire hose, giving you all of the
messages in the journal, starting with the oldest (just as they would appear
in a logfile). Mercifully, journalctl defaults to using a pager such as less to
display messages so your terminal won’t be flooded. You can search messages
with the pager and reverse the message time order with journalctl -r, but
there are much better ways of finding logs.

To get full access to the journal messages, you need to run journalctl either as root or
as a user belonging to the adm or systemd-journal groups. The default user on most
distributions has access.

In general, you can search individual fields of journals just by adding
them to the command line; for example, run journalctl _PID=8792 to search
for messages from process ID 8792. However, the most powerful filtering
features are more general in nature. You can specify one or more if you
need multiple criteria.

Filtering by Time

The -S (since) option is among the most useful in narrowing in on a specific
time. Here’s an example of one of the easiest and most effective ways to use it:

$ journalctl -S -4h

System Configuration: Logging, System Time, Batch Jobs, and Users 169

170

Chapter 7

The -4h part of this command may look like an option, but in reality, it’s
a time specification telling journalctl to search for messages from the past
four hours in your current time zone. You can also use a combination of a
specific day and/or time:

$ journalctl -S 06:00:00
$ journalctl -S 2020-01-14
$ journalctl -S '2020-01-14 14:30:00'

The -U (until) option works the same way, specifying a time up to
which journalctl should retrieve messages. However, it’s often not as use-
ful because you'll typically page or search through messages until you find
what you need, then just quit.

Filtering by Unit

Another quick and effective way to get at relevant logs is to filter by systemd
unit. You can do this with the -u option, like this:

$ journalctl -u cron.service

You can normally omit the unit type (.service in this case) when filter-
ing by unit.

If you don’t know the name of a particular unit, try this command to
list all units in the journal:

$ journalctl -F _SYSTEMD_UNIT

The -F option shows all values in the journal for a particular field.

Finding Fields

Sometimes you just need to know which field to search. You can list all avail-
able fields as follows:

$ journalctl -N

Any field beginning with an underscore (such as _SYSTEMD_UNIT from the
previous example) is a trusted field; the client that sends a message cannot
alter these fields.

Filtering by Text

A classic method of searching logfiles is to run grep over all of them, hoping
to find a relevant line or spot in a file where there might be more informa-
tion. Similarly, you can search journal messages by regular expression with
the -g option, as in this example, which will return messages containing
kernel followed somewhere by memory:

$ journalctl -g 'kernel.*memory'

NOTE

NOTE

Unfortunately, when you search the journal this way, you get only the
messages that match the expression. Often, important information might
be nearby in terms of time. Try to pick out the timestamp from a match,
and then run journalctl -S with a time just before to see what messages
came around the same time.

The -g option requires a build of journalctl with a particular library. Some distribu-
tions do not include a version that supports -g.

Filtering by Boot

Often, you’ll find yourself looking through the logs for messages around
the time when a machine booted or just before it went down (and
rebooted). It’s very easy to get the messages from just one boot, from when
the machine started until it stopped. For example, if you're looking for the
start of the current boot, just use the -b option:

$ journalctl -b

You can also add an offset; for example, to start at the previous boot,
use an offset of -1.

$ journalctl -b -1

You can quickly check whether the machine shut down cleanly on the last cycle by
combining the -b and -r (reverse) options. Try it; if the output looks like the example
here, the shutdown was clean:

$ journalctl -r -b -1

-- Logs begin at Wed 2019-04-03 12:29:31 EDT, end at Fri 2019-08-02 19:10:14
EDT. --

Jul 18 12:19:52 mymachine systemd-journald[602]: Journal stopped

Jul 18 12:19:52 mymachine systemd-shutdown[1]: Sending SIGTERM to remaining
processes...

Jul 18 12:19:51 mymachine systemd-shutdown[1]: Syncing filesystems and block
devices.

Instead of an offset like -1, you can also view boots by IDs. Run the fol-
lowing to get the boot IDs:

$ journalctl --list-boots

-1 e598bd09e5c046838012bab61075dccbb Fri 2019-03-22 17:20:01 EDT-Fri 2019-04-12
08:13:52 EDT

0 5696e69b1c0b42d58b9c57¢31d8c89cc Fri 2019-04-12 08:15:39 EDT-Fri 2019-08-02
19:17:01 EDT

System Configuration: logging, System Time, Batch Jobs, and Users 171

172

Chapter 7

Finally, you can display kernel messages (with or without selecting a
particular boot) with journalctl -k.

Filtering by Severity/Priority

Some programs produce a large number of diagnostic messages that can
obscure important logs. You can filter by the severity level by specifying a
value between 0 (most important) and 7 (least important) alongside the -p
option. For example, to get the logs from levels 0 through 3, run:

$ journalctl -p 3

If you want only the logs from a specific set of severity levels, use the ..
range syntax:

$ journalctl -p 2..3

Filtering by severity sounds like it may save a lot of time, but you might
not find much use for it. Most applications don’t generate large amounts of
informational data by default, though some include configuration options
to enable more verbose logging.

Simple Log Monitoring

One traditional way to monitor logs is to use tail -f or the less follow mode
(less +F) on a logfile to see messages as they arrive from the system logger.
This isn’t a very effective regular system monitoring practice (it’s too easy to
miss something), but it’s useful for examining a service when you're trying
to find a problem, or get a closer look at startup and operation in real time.

Using tail -f doesn’t work with journald because it doesn’t use plaintext
files; instead, you can use the -f option to journalctl to produce the same
effect of printing logs as they arrive:

$ journalctl -f

This simple invocation is good enough for most needs. However, you
may want to add some of the preceding filtering options if your system has a
fairly constant stream of log messages not related to what you're looking for.

7.1.3 Logfile Rotation

When you’re using a syslog daemon, any log message that your system
records goes into a logfile somewhere, which means you need to delete old
messages occasionally so that they don’t eventually consume all of your stor-
age space. Different distributions do this in different ways, but most use the
logrotate utility.

The mechanism is called log rotation. Because a traditional text logfile
contains the oldest messages at the beginning and the newest at the end, it’s
quite difficult to remove just the older messages from a file to free up some
space. Instead, a log maintained by logrotate is divided into many chunks.

Say you have a logfile called auth.login /var/log containing the most
recent log messages. Then there’s an auth.log. 1, auth.log.2, and auth.log. 3,
each with progressively older data. When logrotate decides that it’s time to
delete some old data, it “rotates” the files like this:

Removes the oldest file, auth.log.3.
Renames auth.log.2 to auth.log.3.
Renames auth.log.1 to auth.log.2.

0 o=

Renames auth.log to auth.log. 1.

The names and some details vary across distributions. For example,
the Ubuntu configuration specifies that logrotate should compress the file
that’s moved from the “1” position to the “2” position, so in the previous
example, you would have auth.log.2.gz and auth.log.3.gz. In other distribu-
tions, logrotate renames the logfiles with a date suffix, such as -20200529.
One advantage of this scheme is that it’s easier to find a logfile from a spe-
cific time.

You might be wondering what happens if logrotate performs a rotation
around the same time that another utility (such as rsyslogd) wants to add
to the logfile. For example, say the logging program opens the logfile for
writing but doesn’t close it before logrotate performs the rename. In this
somewhat unusual scenario, the log message would be written successfully,
because in Linux, once a file is open, the I/O system has no way to know it
was renamed. But note that the file the message appears in will be the file
with the new name, such as auth.log.1.

If logrotate has already renamed the file before the logging program
attempts to open it, the open() system call creates a new logfile (such as
auth.log), just as it would if logrotate weren’t running.

7.1.4 Journal Maintenance

The journals stored in /var/log/journal don’t need rotation, because jour-
nald itself can identify and remove old messages. Unlike traditional log
management, journald normally decides to delete messages based on how
much space is left on the journal’s filesystem, how much space the jour-
nal should take as a percentage of the filesystem, and what the maximum
journal size is set to. There are other options for log management, such as
the maximum allowed age of a log message. You’ll find a description of the
defaults as well as the other settings in the journald.conf(5) manual page.

7.1.5 A Closer Look at System Logging

Now that you've seen some of the operational details of syslog and the jour-
nal, it’s time to step back a bit and look at the reasons why and how logging
works the way it does. This discussion is more theoretical than hands-on;
you can skip to the next topic in the book without a problem.

In the 1980s, a gap was starting to emerge: Unix servers needed a way
to record diagnostic information, but there was no standard for doing so.

System Configuration: logging, System Time, Batch Jobs, and Users 173

When syslog appeared with the sendmail email server, it made enough
sense that developers of other services readily adopted it. RFC 3164
describes the evolution of syslog.

The mechanism is fairly simple. A traditional syslogd listens and waits
for messages on Unix domain socket /dev/log. One additional powerful feature
of syslogd is the ability to listen on a network socket in addition to /dev/log,
enabling client machines to send messages across a network.

This makes it possible to consolidate all syslog messages from an entire
network onto one logging server, and for this reason, syslog became very
popular with network administrators. Many network devices, such as rout-
ers and embedded devices, can act as syslog clients, sending their diagnos-
tic messages to a server.

Syslog has a classic client-server architecture, including its own proto-
col (currently defined in RFC 5424). However, the protocol wasn’t always
standard, and earlier versions didn’t accommodate much structure beyond
some basics. Programmers using syslog were expected to come up with a
descriptive, yet clear and brief, log message format for their own applica-
tions. Over time, the protocol added new features while still trying to main-
tain as much backward compatibility as possible.

Facility, Severity, and Other Fields

Because syslog sends messages of various types from different services to
different destinations, it needs a way to classify each message. The tradi-
tional method is to use encoded values of facility and severity that were usu-
ally (but not always) included in a message. In addition to file output, even
very old versions of syslogd were capable of sending important messages to
consoles and directly to particular logged-in users based on the messages’
facility and severity—an early tool for system monitoring.

The facility is a general category of service, identifying what sent the
message. Facilities include services and system components such as kernel,
mail system, and printer.

The severity is the urgency of the log message. There are eight levels,
numbered 0 through 7. They’re usually referred to by name, although the
names aren’t very consistent and have varied across implementations:

0: emerg 4: warning
1: alert 5: notice
2: crit 6: info
3: err 7: debug

The facility and severity together make up the priority, packaged as
one number in the syslog protocol. You can read all about these fields in
RFC 5424, learn how to specify them in applications in the syslog(3) man-
ual page, and learn how to match them in the rsyslog.conf(5) manual page.

174 Chapter 7

However, you might run into some confusion when translating them to the
journald world, where the severity is referred to as the priority (for exam-
ple, when you run journalctl -o json to get machine-readable log output).

Unfortunately, when you start to examine the details of the priority
part of the protocol, you’ll find that it hasn’t kept pace with changes and
requirements in the rest of the OS. The severity definition still holds up
well, but the available facilities are hardwired and include seldom-used
services such as UUCP, with no way to define new ones (only a number of
generic local0 through local7 slots).

We’ve already talked about some of the other fields in log data, but
RFC 5424 also includes a provision for structured data, sets of arbitrary key-
value pairs that application programmers can use to define their own fields.
Though these can be used with journald with some extra work, it’s much
more common to send them to other kinds of databases.

The Relationship Between Syslog and journald

The fact that journald has completely displaced syslog on some systems
might have you asking why syslog remains on others. There are two main
reasons:

e Syslog has a well-defined means of aggregating logs across many
machines. It is much easier to monitor logs when they are on just one
machine.

e Versions of syslog such as rsyslogd are modular and capable of output to
many different formats and databases (including the journal format).
This makes it easier to connect them to analysis and monitoring tools.

By contrast, journald emphasizes collecting and organizing the log out-
put of a single machine into a single format.

When you want to do something more complicated, journald’s capability
of feeding its logs into a different logger offers a high degree of versatility.
This is especially true when you consider that systemd can collect the output
of server units and send them to journald, giving you access to even more
log data than what applications send to syslog.

Final Notes on Logging

Logging on Linux systems has changed significantly during its history,
and it’s a near-certainty that it will continue to evolve. At the moment,
the process of collecting, storing, and retrieving logs on a single machine
is well defined, but there are other aspects of logging that aren’t
standardized.

First, there’s a dizzying array of options available when you want to
aggregate and store logs over a network of machines. Instead of a central-
ized log server simply storing logs in text files, the logs can now go into
databases, and often the centralized server itself is replaced by an internet
service.

System Configuration: Logging, System Time, Batch Jobs, and Users 175

176

7.2

Chapter 7

Next, the nature of how logs are consumed has changed. At one time,
logs were not considered to be “real” data; their primary purpose was a
resource that the (human) administrator could read when something went
wrong. However, as applications have become more complex, logging needs
have grown. These new requirements include the capability to search,
extract, display, and analyze the data inside the logs. Although we have
many ways of storing logs in databases, tools to use the logs in applications
are still in their infancy.

Finally, there’s the matter of ensuring that the logs are trustworthy. The
original syslog had no authentication to speak of; you simply trusted that
whatever application and/or machine sending the log was telling the truth.
In addition, the logs were not encrypted, making them vulnerable to snoop-
ing on the network. This was a serious risk in networks that required high
security. Contemporary syslog servers have standard methods of encrypting
a log message and authenticating the machine where it originates. However,
when you get down to individual applications, the picture becomes less
clear. For example, how can you be sure that the thing that calls itself your
web server actually is the web server?

We’ll explore a few somewhat advanced authentication topics later in
the chapter. But for now, let’s move on to the basics of how configuration
files are organized on the system.

The Structure of /etc

Most system configuration files on a Linux system are found in /etc. Historically,
each program or system service had one or more configuration files there, and
due to the large number of components on a Unix system, /etc would accumu-
late files quickly.

There were two problems with this approach: it was hard to find par-
ticular configuration files on a running system, and it was difficult to main-
tain a system configured this way. For example, if you wanted to change the
sudo configuration, you’d have to edit /etc/sudoers. But after your change, an
upgrade to your distribution could wipe out your customizations because it
would overwrite everything in /etc.

The trend for many years has been to place system configuration files
into subdirectories under /elc, as you've already seen for systemd, which
uses /etc/systemd. There are still a few individual configuration files in /etc,
but if you run 1s -F /etc, you'll see that most of the items there are now
subdirectories.

To solve the problem of overwriting configuration files, you can now
place customizations in separate files in the configuration subdirectories,
such as the ones in /etc/grub.d.

What kind of configuration files are found in /etc? The basic guide-
line is that customizable configurations for a single machine, such as user
information (/etc/passwd) and network details (/etc/network), go into /elc.
However, general application details, such as a distribution’s defaults for a

7.3

user interface, don’t belong in /etc. System default configuration files not
meant to be customized also are usually found elsewhere, as with the pre-
packaged systemd unit files in /usr/lib/systemd.

You've already seen some of the configuration files that pertain to boot-
ing. Let’s continue by looking at how users are configured on a system.

User Management Files

Unix systems allow for multiple independent users. At the kernel level, users
are simply numbers (user IDs), but because it’s much easier to remember a
name than a number, you’ll normally work instead with usernames (or login
names) when managing Linux. Usernames exist only in user space, so any
program that works with a username needs to find its corresponding user
ID when talking to the kernel.

7.3.1 The /etc/passwd File

The plaintext file /etc/passwd maps usernames to user IDs. It looks like
Listing 7-1.

root:x:0:0:Superuser:/root:/bin/sh
daemon:*:1:1:daemon:/usr/sbin:/bin/sh
bin:*:2:2:bin:/bin:/bin/sh

sys:*:3:3:sys:/dev:/bin/sh

nobody : *:65534:65534:nobody: /home: /bin/false
juser:x:3119:1000:]. Random User:/home/juser:/bin/bash
beazley:x:143:1000:David Beazley:/home/beazley:/bin/bash

Listing 7-1: A list of users in /etc/passwd

Each line represents one user and has seven fields separated by colons.
The first is the username.

Following this is the user’s encrypted password, or at least what was
once the field for the password. On most Linux systems, the password is
no longer actually stored in the passwd file, but rather in the shadow file
(see Section 7.3.3). The shadow file format is similar to that of passwd, but
normal users don’t have read permission for shadow. The second field
in passwd or shadow is the encrypted password, and it looks like a bunch
of unreadable garbage, such as d1CVEWiB/oppc. Unix passwords are never
stored as clear text; in fact, the field is not the password itself, but a deri-
vation of it. In most cases, it’s exceptionally difficult to get the original
password from this field (assuming that the password is not easy to guess).

An x in the second passwd file field indicates that the encrypted pass-
word is stored in the shadow file (which should be configured on your sys-
tem). An asterisk (*) indicates that the user cannot log in.

If this password field is blank (that is, you see two colons in a row, like
:1), no password is required to log in. Beware of blank passwords like this.
You should never have a user able to log in without a password.

System Configuration: Logging, System Time, Batch Jobs, and Users 177

178

Chapter 7

The remaining passwd fields are as follows:

e The user ID (UID), which is the user’s representation in the kernel. You
can have two entries with the same user ID, but this will confuse you—
and possibly your software as well—so keep the user ID unique.

e The group ID (GID), which should be one of the numbered entries in
the /etc/group file. Groups determine file permissions and little else.
This group is also called the user’s primary group.

e The user’s real name (often called the GECOS field). You’ll sometimes
find commas in this field, denoting room and telephone numbers.

e The user’s home directory.

e The user’s shell (the program that runs when the user runs a terminal
session).

Figure 7-1 identifies the various fields in one of the entries in
Listing 7-1.

Login name
Password
User ID
Group ID Real name (GECOS)
[Home directory
[- Shel

juser:x:3119:1000:j. Random Usef:yhome/jusef:}bin/bash

Figure 7-1: An entry in the password file

The /etc/passwd file syntax is fairly strict, allowing for no comments or
blank lines.

A user in /etc/passwd and a corresponding home directory are collectively known as
an account. However, remember that this is a user-space convention. An entry in the
passwd file is usually enough to qualify; the home directory doesn’t have to exist in
order for most programs to recognize an account. Furthermore, there are ways to add
users on a system without explicitly including them in the passwd file; for example,
adding users from a network server using something like NIS (Network Information
Service) or LDAP (Lightweight Directory Access Protocol) was once common.

7.3.2 Special Users

You'll find a few special users in /etc/passwd. The superuser (root) always
has UID 0 and GID 0, as in Listing 7-1. Some users, such as daemon, have
no login privileges. The nobody user is an underprivileged user; some
processes run as nobody because it cannot (normally) write to anything
on the system.

Users that cannot log in are called pseudo-users. Although they can’t log
in, the system can start processes with their user IDs. Pseudo-users such as
nobody are usually created for security reasons.

Again, these are all user-space conventions. These users have no special
meaning to the kernel; the only user ID that means anything special to the
kernel is the superuser’s, 0. It’s possible to give the nobody user access to
everything on the system just as you would with any other user.

7.3.3 The /etc¢/shadow File

The shadow password file (/el¢/shadow) on a Linux system normally contains
user authentication information, including the encrypted passwords and
password expiration information that correspond to the users in /etc/passwd.

The shadow file was introduced to provide a more flexible (and per-
haps more secure) way of storing passwords. It included a suite of librar-
ies and utilities, many of which were soon replaced by pieces of PAM
(Pluggable Authentication Modules; we’ll cover this advanced topic in
Section 7.10). Rather than introduce an entirely new set of files for Linux,
PAM uses /etc/shadow, but not certain corresponding configuration files
such as /etc/login.defs.

7.3.4 Manipulating Users and Passwords

Regular users interact with /etc/passwd using the passwd command and a few
other tools. Use passwd to change your password. You can use chfn and chsh
to change the real name and shell, respectively (the shell must be listed in
/etc/shells). These are all suid-root executables, because only the superuser
can change the /etc/passwd file.

Changing /etc/passwd as the Superuser

Because /etc/passwd is just a normal plaintext file, the superuser is techni-
cally allowed to use any text editor to make changes. To add a user, it’s pos-
sible to simply add an appropriate line and create a home directory for the
user; to delete, you can do the opposite.

However, directly editing passwd like this is a bad idea. Not only is it
too easy to make a mistake, but you can also get caught with a concurrency
problem if something else is making passwd changes at the same time. It’s
much easier (and safer) to make changes to users using separate commands
available from the terminal or through the GUI. For example, to set a user’s
password, run passwd user as the superuser. Use adduser and userdel to add
and remove users, respectively.

However, if you really must edit the file directly (for example, if it’s some-
how corrupted), use the vipw program, which backs up and locks /etc/passwd
while you're editing it as an added precaution. To edit /ef¢/shadow instead of
/et¢/passwd, use vipw -s. (Hopefully, you’ll never need to do either of these.)

System Configuration: Logging, System Time, Batch Jobs, and Users 179

180

7.3.5 Working with Groups

Groups in Unix offer a way to share files among certain users. The idea is
that you can set read or write permission bits for a particular group, exclud-
ing everyone else. This feature was once important because many users
shared one machine or network, but it’s become less significant in recent
years as workstations are shared less often.

The /etc/group file defines the group IDs (such as the ones found in the
/Jetc/passwd file). Listing 7-2 is an example.

root:*:0:juser
daemon:*:1:

bin:*:2:

sys:*:3:

adm:*:4:
disk:*:6:juser,beazley
nogroup:*:65534:
user:*:1000:

Listing 7-2: A sample /etc/group file

As with the /et¢/passwd file, each line in /etc/group is a set of fields sepa-
rated by colons. The fields in each entry are as follows, from left to right:

The group name This appears when you run a command like 1s -1.

The group password Unix group passwords are hardly ever used, nor
should you use them (a good alternative in most cases is sudo). Use * or
any other default value. An x here means that there’s a corresponding
entry in /et¢/gshadow, and this is also nearly always a disabled password,
denoted with a * or !.

The group ID (anumber) The GID must be unique within the group file.
This number goes into a user’s group field in that user’s /et¢/passwd entry.

An optional list of users that belong to the group In addition to the
users listed here, users with the corresponding group ID in their passwd
file entries also belong to the group.

Figure 7-2 identifies the fields in a group file entry.

Group name
Password

Group ID
l rAdditionaI members

disk:*:6:ﬁuser,beazley

Figure 7-2: An entry in the group file

To see the groups you belong to, run groups.

Linux distributions often create a new group for each new user added, with the same

Chapter 7

name as the user.

74

7.5

getty and login

The getty program attaches to terminals and displays a login prompt. On
most Linux systems, getty is uncomplicated because the system uses it only
for logins on virtual terminals. In a process listing, it usually looks some-
thing like this (for example, when running on /dev/ttyl):

$ ps ao args | grep getty
/sbin/agetty -o -p -- \u --noclear ttyil linux

On many systems, you may not even see a getty process until you access
avirtual terminal with something like CTRL-ALT-F1. This example shows
agetty, the version that many Linux distributions include by default.

After you enter your login name, getty replaces itself with the login pro-
gram, which asks for your password. If you enter the correct password, login
replaces itself (using exec()) with your shell. Otherwise, you get a “Login

incorrect” message. Much of the login program’s real authentication work is
handled by PAM (see Section 7.10).

When investigating getty, you may come across a reference to a baud rate such as
“38400.” This setting is all but obsolete. Virtual terminals ignore the baud rate; it’s
only there for connecting to real serial lines.

You now know what getty and login do, but you’ll probably never need
to configure or change them. In fact, you’ll rarely even use them, because
most users now log in either through a graphical interface such as gdm or
remotely with SSH, neither of which uses getty or login.

Setting the Time

Unix machines depend on accurate timekeeping. The kernel maintains the
system clock, which is the clock consulted when you run commands like date.
You can also set the system clock using the date command, but it’s usually a
bad idea to do so because you’ll never get the time exactly right. Your sys-
tem clock should be as close to the correct time as possible.

PC hardware has a battery-backed real-time clock (RTC). The RTC isn’t
the best clock in the world, but it’s better than nothing. The kernel usually
sets its time based on the RTC at boot time, and you can reset the system
clock to the current hardware time with hwclock. Keep your hardware clock
in Universal Coordinated Time (UTC) in order to avoid any trouble with
time zone or daylight saving time corrections. You can set the RTC to your
kernel’s UTC clock using this command:

hwclock --systohc --utc

Unfortunately, the kernel is even worse at keeping time than the RTC,
and because Unix machines often stay up for months or years on a single

System Configuration: Logging, System Time, Batch Jobs, and Users 181

182

Chapter 7

boot, they tend to develop time drift. Teme driftis the current difference
between the kernel time and the true time (as defined by an atomic clock
or another very accurate clock).

You shouldn’t try to fix time drift with hwclock because time-based sys-
tem events can get lost or mangled. You could run a utility like adjtimex to
smoothly update the clock based on the RTC, but usually it’s best to keep
your system time correct with a network time daemon (see Section 7.5.2).

7.5.1 Kernel Time Representation and Time Zones

The kernel’s system clock represents the current time as the number of sec-
onds since 12:00 midnight on January 1, 1970, UTC. To see this number at
the moment, run:

$ date +%s

To convert this number into something that humans can read, user-
space programs change it to local time and compensate for daylight saving
time and any other strange circumstances (such as living in Indiana). The
local time zone is controlled by the file /etc/localtime. (Don’t bother trying to
look at it; it’s a binary file.)

The time zone files on your system are in /usy/share/zoneinfo. You’ll find
that this directory contains a lot of time zones and aliases for time zones.
To set your system’s time zone manually, either copy one of the files in
Jusr/share/zoneinfo to Jetc/localtime (or make a symbolic link) or change it with
your distribution’s time zone tool. The command-line program tzselect
may help you identify a time zone file.

To use a time zone other than the system default for just one shell ses-
sion, set the TZ environment variable to the name of a file in /usr/share/
zoneinfo and test the change, like this:

$ export TZ=US/Central
$ date

As with other environment variables, you can also set the time zone for
the duration of a single command like this:

$ TZ=US/Central date

7.5.2 Network Time

If your machine is permanently connected to the internet, you can run
a Network Time Protocol (NTP) daemon to maintain the time using a
remote server. This was once handled by the ntpd daemon, but as with
many other services, systemd has replaced this with its own package,
named timesyncd. Most Linux distributions include timesyncd, and it’s

7.6

enabled by default. You shouldn’t need to configure it, but if you’re inter-
ested in how to do it, the timesyncd.conf(5) manual page can help you.
The most common override is to change the remote time server(s).

If you want to run ntpd instead, you’ll need to disable timesyncd if
you've got it installed. Go to https://www.ntppool.org/ to see the instructions
there. This site might also be useful if you still want to use timesyncd with
different servers.

If your machine doesn’t have a permanent internet connection, you can
use a daemon such as chronyd to maintain the time during disconnections.
You can also set your hardware clock based on the network time in
order to help your system maintain time coherency when it reboots. Many

distributions do this automatically, but to do it manually, make sure that
your system time is set from the network and then run this command:

hwclock --systohc --utc

Scheduling Recurring Tasks with cron and Timer Units

There are two ways to run programs on a repeating schedule: cron, and
systemd timer units. This ability is vital to automating system maintenance
tasks. One example is logfile rotation utilities to ensure that your hard
drive doesn’t fill up with old logfiles (as discussed earlier in the chapter).
The cron service has long been the de facto standard for doing this, and
we’ll cover it in detail. However, systemd’s timer units are an alternative to
cron with advantages in certain cases, so we’ll see how to use them as well.
You can run any program with cron at whatever times suit you. The pro-
gram running through cron is called a c¢ron job. To install a cron job, you’ll
create an entry line in your c¢rontab file, usually by running the crontab com-
mand. For example, the following crontab file entry schedules the /home/
juser/bin/spmake command daily at 9:15 AM (in the local time zone):

15 09 * * * /home/juser/bin/spmake

The five fields at the beginning of this line, delimited by whitespace,
specify the scheduled time (see also Figure 7-3). The fields are as follows,
in order:

e Minute (0 through 59). This cron job is set for minute 15.

e Hour (0 through 23). This job is set for the ninth hour.

e Day of month (1 through 31).

e Month (1 through 12).

e Day of week (0 through 7). The numbers 0 and 7 are Sunday.

System Configuration: Logging, System Time, Batch Jobs, and Users 183

184

NOTE

Chapter 7

Minute

Hour
Day of month
Month
Day of week
l Comlmond

15 09 * * * /home/juser/bin/spmaké

Figure 7-3: An entry in the crontab file

A star (*) in any field means to match every value. The preceding exam-
ple runs spmake daily because the day of month, month, and day of week
fields are all filled with stars, which cron reads as “run this job every day, of
every month, of every day of the week.”

To run spmake only on the 14th day of each month, you would use this
crontab line:

15 09 14 * * /home/juser/bin/spmake

You can select more than one time for each field. For example, to run
the program on the 5th and the 14th day of each month, you could enter
5,14 in the third field:

15 09 5,14 * * /home/juser/bin/spmake

If the cron job generates standard output or an error or exits abnormally, cron should
email this information to the owner of the cron job (assuming that email works on
your system). Redirect the output to /dev/null or some other logfile if you find the
email annoying.

The crontab(b) manual page provides complete information on the
crontab format.

7.6.1 Installing Crontab Files

Each user can have their own crontab file, which means that every sys-
tem may have multiple crontabs, usually found in /var/spool/cron/crontabs.
Normal users can’t write to this directory; the crontab command installs,
lists, edits, and removes a user’s crontab.

The easiest way to install a crontab is to put your crontab entries into
a file and then use crontab file to install file as your current crontab. The
crontab command checks the file format to make sure that you haven’t made
any mistakes. To list your cron jobs, run crontab -1. To remove the crontab,
use crontab -r.

After you've created your initial crontab, it can be a bit messy to use
temporary files to make further edits. Instead, you can edit and install your

crontab in one step with the crontab -e command. If you make a mistake,
crontab should tell you where the mistake is and ask if you want to try edit-
ing again.

7.6.2 System Crontab Files

Many common cron-activated system tasks are run as the superuser.
However, rather than editing and maintaining a superuser’s crontab to
schedule these, Linux distributions normally have an /etc/crontab file for
the entire system. You won’t use crontab to edit this file, and in any case, it’s
slightly different in format: before the command to run, there’s an addi-
tional field specifying the user that should run the job. (This gives you the
opportunity to group system tasks together even if they aren’t all run by
the same user.) For example, this cron job defined in /et¢/crontab runs at
6:42 AM as the superuser (root @):

42 6 * * * yoot® /usr/local/bin/cleansystem > /dev/null 2>81

Some distributions store additional system crontab files in the /etc/cron.d directory.
These files may have any name, but they have the same format as /etc/crontab.
There may also be some directories such as /etc/cron.daily, but the files here are usu-
ally scripts run by a specific cron job in /etc/crontab or /etc/cron.d. It can some-
times be confusing to track down where the jobs are and when they run.

7.6.3 Timer Units

An alternative to creating a cron job for a periodic task is to build a systemd
timer unit. For an entirely new task, you must create two units: a timer unit
and a service unit. The reason for two units is that a timer unit doesn’t con-
tain any specifics about the task to performs; it’s just an activation mecha-
nism to run a service unit (or conceptually, another kind of unit, but the
most common usage is for service units).

Let’s look at a typical timer/service unit pair, starting with the timer
unit. Let’s call this loggertest.timer; as with other custom unit files, we’ll put it
in /etc/systemd/system (see Listing 7-3).

[Unit]
Description=Example timer unit

[Timer]
OnCalendar=*-*-* *:00,20,40
Unit=loggertest.service

[Install]
WantedBy=timers.target

Listing 7-3: loggertest. timer

System Configuration: logging, System Time, Batch Jobs, and Users 185

186

Chapter 7

This timer runs every 20 minutes, with the OnCalendar option resembling
the cron syntax. In this example, it’s at the top of each hour, as well as 20
and 40 minutes past each hour.

The OnCalendar time format is year-month-day hour:minute:second. The field
for seconds is optional. As with cron, a * represents a sort of wildcard, and
commas allow for multiple values. The periodic / syntax is also valid; in the
preceding example, you could change the *:00,20,40 to *:00/20 (every 20
minutes) for the same effect.

The syntax for times in the OnCalendar field has many shortculs and variations. See
the Calendar Events section of the systemd.time(7) manual page for the full list.

The associated service unit is named loggertest.service (see Listing 7-4).
We explicitly named it in the timer with the Unit option, but this isn’t strictly
necessary because systemd looks for a .service file with the same base name
as the timer unit file. This service unit also goes in /etc/systemd/system, and
looks quite similar to the service units that you saw back in Chapter 6.

[Unit]
Description=Example Test Service

[Service]
Type=oneshot
ExecStart=/usr/bin/logger -p local3.debug I\'m a logger

Listing 7-4: loggertest.service

The meat of this is the ExecStart line, which is the command that the
service runs when activated. This particular example sends a message to
the system log.

Note the use of oneshot as the service type, indicating that the service
is expected to run and exit, and that systemd won’t consider the service
started until the command specified by ExecStart completes. This has a few
advantages for timers:

¢ You can specify multiple ExecStart commands in the unit file. The other
service unit styles that we saw in Chapter 6 do not allow this.

e It’s easier to control strict dependency order when activating other
units using Wants and Before dependency directives.

e You have better records of start and end times of the unit in the
journal.

In this unit example, we’re using logger to send an entry to syslog and the journal.
You read in Section 7.1.2 that you can view log messages by unit. However, the unit
could finish wp before journald has a chance to recerve the message. This is a race
condition, and in the case that the unit completes too quickly, journald won’t be able
to look wp the unit associated with the syslog message (this is done by process ID).

7.7

Consequently, the message that gets written in the journal may not include a unit
field, rendering a filtering command such as journalctl -f -u loggertest.service
incapable of showing the syslog message. This isn’t normally a problem in longer-
TUNNING Services.

7.6.4 cron vs. Timer Units

The cron utility is one of the oldest components of a Linux system; it’s been
around for decades (predating Linux itself), and its configuration format
hasn’t changed much for many years. When something gets to be this old, it
becomes fodder for replacement.

The systemd timer units that you just saw may seem like a logical
replacement, and indeed, many distributions have now moved system-level
periodic maintenance tasks to timer units. But it turns out that cron has
some advantages:

e Simpler configuration
e Compatibility with many third-party services

e Easier for users to install their own tasks
Timer units offer these advantages:

e Superior tracking of processes associated with tasks/units with cgroups
e Excellent tracking of diagnostic information in the journal
e Additional options for activation times and frequencies

e Ability to use systemd dependencies and activation mechanisms

Perhaps someday there will be a compatibility layer for cron jobs in
much the same manner as mount units and /etc/fstab. However, configura-
tion alone is a reason why it’s unlikely that the cron format will go away any
time soon. As you’ll see in the next section, a utility called systemd-run does
allow for creating timer units and associated services without creating unit
files, but the management and implementation differ enough that many
users would likely prefer cron. You’ll see some of this shortly when we dis-
cuss at.

Scheduling One-Time Tasks with at

To run a job once in the future without using cron, use the at service. For
example, to run myjob at 10:30 PM, enter this command:

$ at 22:30
at> myjob

End the input with CTRL-D. (The at utility reads the commands from
the standard input.)

System Configuration: Logging, System Time, Batch Jobs, and Users 187

188

NOTE

7.8

Chapter 7

To check that the job has been scheduled, use atq. To remove it, use
atrm. You can also schedule jobs days into the future by adding the date in
DD.MM. YY format—for example, at 22:30 30.09.15.

There isn’t much else to the at command. Though it isn’t used that
often, it can be invaluable when the need does arise.

7.7.1 Timer Unit Equivalents

You can use systemd timer units as a substitute for at. These are much eas-
ier to create than the periodic timer units that you saw earlier, and can be
run on the command line like this:

systemd-run --on-calendar='2022-08-14 18:00' /bin/echo this is a test
Running timer as unit: run-rbdo00cc6ee6f45b69cb87can839c12de.timer
Will run service as unit: run-rbdooOcc6ee6f45b69cb87can839ci2de.service

The systemd-run command creates a transient timer unit that you can
view with the usual systemctl list-timers command. If you don’t care about
a specific time, you can specify a time offset instead with --on-active (for
example, --on-active=30m for 30 minutes in the future).

When using --on-calendar, it’s important that you include a (future) calendar date
as well as the time. Otherwise, the timer and service units will remain, with the timer
running the service every day at the specified time, much as it would if you created a
normal timer unit as described earlier. The syntax for this option is the same as the
OnCalendar option in timer units.

Timer Units Running as Regular Users

All of the systemd timer units we’ve seen so far have been run as root. It’s
also possible to create a timer unit as a regular user. To do this, add the
--user option to systemd-run.

However, if you log out before the unit runs, the unit won’t start; and
if you log out before the unit completes, the unit terminates. This happens
because systemd has a user manager associated with a logged-in user, and
this is necessary to run timer units. You can tell systemd to keep the user
manager around after you log out with this command:

$ loginctl enable-linger

As root, you can also enable a manager for another user:

loginctl enable-linger user

79

User Access Topics

The remainder of this chapter covers several topics on how users get the per-
mission to log in, switch to other users, and perform other related tasks. This
is somewhat advanced material, and you’re welcome to skip to the next chap-
ter if you're ready to get your hands dirty with some process internals.

7.9.1 User IDs and User Switching

We’ve discussed how setuid programs such as sudo and su allow you to tem-
porarily change users, and we’ve covered system components like login that
control user access. Perhaps you're wondering how these pieces work and
what role the kernel plays in user switching.

When you temporarily switch to another user, all you're really doing
is changing your user ID. There are two ways to do this, and the kernel
handles both. The first is with a setuid executable, which was covered in
Section 2.17. The second is through the setuid() family of system calls.
There are a few different versions of this system call to accommodate the
various user IDs associated with a process, as you’ll learn in Section 7.9.2.

The kernel has basic rules about what a process can or can’t do, but
here are the three essentials that cover setuid executables and setuid():

e A process can run a setuid executable as long as it has adequate file
permissions.

e A process running as root (user ID 0) can use setuid() to become any
other user.

e A process not running as root has severe restrictions on how it may use
setuid(); in most cases, it cannot.

As a consequence of these rules, if you want to switch user IDs from a
regular user to another user, you often need a combination of the methods.
For example, the sudo executable is setuid root, and once running, it can
call setuid() to become another user.

At its core, user switching has nothing to do with passwords or usernames. Those are
strictly user-space concepts, as you first saw in the /etc/passwd file in Section 7.3.1.
You'll learn more details about how this works in Section 7.9.4.

7.9.2 Process Ownership, Effective UID, Real UID, and Saved UID

Our discussion of user IDs so far has been simplified. In reality, every pro-
cess has more than one user ID. So far, you are familiar with the effective user
ID (effective UID, or euid), which defines the access rights for a process (most
significantly, file permissions). A second user ID, the real user ID (real UID, or
ruid), indicates who initiated a process. Normally, these IDs are identical, but
when you run a setuid program, Linux sets the euid to the program’s owner
during execution, but it keeps your original user ID in the ruid.

System Configuration: logging, System Time, Batch Jobs, and Users 189

190

Chapter 7

The difference between the effective and real UIDs is confusing,
so much so that a lot of documentation regarding process ownership is
incorrect.

Think of the euid as the actor and the ruid as the owner. The ruid
defines the user that can interact with the running process—most signifi-
cantly, which user can kill and send signals to a process. For example, if
user A starts a new process that runs as user B (based on setuid permis-
sions), user A still owns the process and can kill it.

We’ve seen that most processes have the same euid and ruid. As a
result, the default output for ps and other system diagnostic programs show
only the euid. To view both user IDs on your system, try this, but don’t be
surprised if you find that the two user ID columns are identical for all pro-
Cesses on your system:

$ ps -eo pid,euser,ruser,comm

To create an exception just so that you can see different values in the
columns, try experimenting by creating a setuid copy of the sleep com-
mand, running the copy for a few seconds, and then running the preceding
ps command in another window before the copy terminates.

To add to the confusion, in addition to the real and effective user IDs,
there’s also a saved user ID (which is usually not abbreviated). A process can
switch its euid to the ruid or saved user ID during execution. (To make
things even more complicated, Linux has yet another user ID: the file system
user ID, or fsuid, which defines the user accessing the filesystem but is rarely
used.)

Typical Setvid Program Behavior

The idea of the ruid might contradict your previous experience. Why don’t
you have to deal with the other user IDs very frequently? For example, after
starting a process with sudo, if you want to Kkill it, you still use sudo; you can’t
kill it as your own regular user. Shouldn’t your regular user be the ruid in
this case, giving you the correct permissions?

The cause of this behavior is that sudo and many other setuid programs
explicitly change the euid and ruid with one of the setuid() system calls.
These programs do so because there are often unintended side effects and
access problems when all of the user IDs do not match.

If you’re interested in the details and rules regarding user ID switching, read the
setuid(2) manual page and check the other manual pages listed in the SEE ALSO
section. There are many different system calls for diverse situations.

Some programs don’t like to have an ruid of root. To prevent sudo from
changing the ruid, add this line to your /etc/sudoers file (and beware of side
effects on other programs you want to run as root!):

Defaults stay_setuid

Security Implications

Because the Linux kernel handles all user switches (and as a result, file
access permissions) through setuid programs and subsequent system calls,
systems developers and administrators must be extremely careful with two
things:

e The number and quality of programs that have setuid permissions

e What those programs do

If you make a copy of the bash shell that is setuid root, any local user
can execute it and have complete run of the system. It’s really that simple.
Furthermore, even a special-purpose program that is setuid root can pose
a danger if it has bugs. Exploiting weaknesses in programs running as root
is a primary method of systems intrusion, and there are too many such
exploits to count.

Because there are so many ways to break into a system, preventing
intrusion is a multifaceted affair. One of the most essential ways to keep
unwanted activity off your system is to enforce user authentication with
usernames and good passwords.

7.9.3 User Identification, Avthentication, and Authorization

A multiuser system must provide basic support for user security in three
areas: identification, authentication, and authorization. The identification
portion of security answers the question of who users are. The authentication
piece asks users to prove that they are who they say they are. Finally, authori-
zation is used to define and limit what users are allowed to do.

When it comes to user identification, the Linux kernel knows only the
numeric user IDs for process and file ownership. The kernel knows autho-
rization rules for how to run setuid executables and how user IDs may run
the setuid() family of system calls to change from one user to another.
However, the kernel doesn’t know anything about authentication: user-
names, passwords, and so on. Practically everything related to authentica-
tion happens in user space.

We discussed the mapping between user IDs and passwords in
Section 7.3.1; now we’ll cover how user processes access this mapping. We’ll
begin with an oversimplified case, in which a user process wants to know its
username (the name corresponding to the euid). On a traditional Unix sys-
tem, a process could do something like this to get its username:

The process asks the kernel for its euid with the geteuid() system call.
2. The process opens the /etc/passwd file and starts reading at the
beginning.
3. The process reads a line of the /elc/passwd file. If there’s nothing left to
read, the process has failed to find the username.

4. The process parses the line into fields (breaking out everything
between the colons). The third field is the user ID for the current line.

System Configuration: Logging, System Time, Batch Jobs, and Users 191

192

7.10

Chapter 7

5. The process compares the ID from step 4 to the ID from step 1. If
they’re identical, the first field in step 4 is the desired username, and
the process can stop searching and use this name.

6. The process moves on to the next line in /et¢/passwd and goes back to step 3.

This is a long procedure, and a real-world implementation is usually
even more complicated.

7.9.4 Using Libraries for User Information

If every developer who needed to know the current username had to write
all of the code you've just seen, the system would be a horrifyingly dis-
jointed, buggy, bloated, and unmaintainable mess. Fortunately, there are
often standard libraries we can use to perform repetitive tasks like this; in
this case, all you’d normally need to do to get a username is call a func-
tion like getpwuid() in the standard library after you have the answer from
geteuid(). (See the manual pages for these calls for more on how they work.)

The standard library is shared among the executables on your system,
so you can make significant changes to the authentication implementation
without changing any program. For example, you can move away from using
/etc/passwd for your users and use a network service such as LDAP instead by
changing only the system configuration.

This approach has worked well for identifying usernames associated
with user IDs, but passwords have proven more troublesome. Section 7.3.1
describes how, traditionally, the encrypted password was part of /etc/passwd,
so if you wanted to verify a password that a user entered, you’d encrypt what-
ever the user typed and compare it to the contents of the /etc/passwd file.

This traditional implementation has many limitations, including:

e It doesn’t allow you to set a system-wide standard for the encryption
protocol.

e Itassumes that you have access to the encrypted password.

e It assumes that you want to prompt the user for a password every time
the user wants to access something that requires authentication (which
gets annoying).

e Itassumes that you want to use passwords. If you want to use one-time
tokens, smart cards, biometrics, or some other form of user authentica-
tion, you have to add that support yourself.

Some of these limitations contributed to the development of the shadow
password package discussed in Section 7.3.3, which took the first step in
allowing system-wide password configuration. But the solution to the bulk
of the problems came with the design and implementation of PAM.

Pluggable Authentication Modules

To accommodate flexibility in user authentication, in 1995 Sun Microsystems
proposed a new standard called Pluggable Authentication Modules (PAM), a system

of shared libraries for authentication (Open Software Foundation RFC 86.0,
October 1995). To authenticate a user, an application hands the user to PAM
to determine whether the user can successfully identify itself. This way, it’s
relatively easy to add support for additional authentication techniques, such
as two-factor and physical keys. In addition to authentication mechanism sup-
port, PAM also provides a limited amount of authorization control for services
(for example, if you’d like to deny a service like cron to certain users).

Because there are many kinds of authentication scenarios, PAM employs a
number of dynamically loadable authentication modules. Each module performs a
specific task and is a shared object that processes can load dynamically and run
in their executable space. For example, pam_unix.sois a module that can check a
user’s password.

This is tricky business, to say the least. The programming interface
isn’t easy, and it’s not clear that PAM actually solves all of the existing prob-
lems. Nevertheless, PAM is supported in nearly every program that requires
authentication on a Linux system, and most distributions use PAM. And
because it works on top of the existing Unix authentication API, integrating
support into a client requires little, if any, extra work.

7.10.1 PAM Configuration

We’ll explore the basics of how PAM works by examining its configuration.
You’ll normally find PAM’s application configuration files in the /etc/pam.d
directory (older systems may use a single /etc/pam.conffile). Most installations
include many files, so you may not know where to start. Some filenames, such
as cron and passwd, correspond to parts of the system that you know already.

Because the specific configuration in these files varies significantly
between distributions, it can be difficult to find a commonly applicable
example. We’ll look at an example configuration line that you might find
for chsh (the change shell program):

auth requisite pam _shells.so

This line says that the user’s shell must be listed in /etc/shells in order for
the user to successfully authenticate with the chsh program. Let’s see how.
Each configuration line has three fields: a function type, control argument,
and module, in that order. Here’s what they mean for this example:

Function type The function that a user application asks PAM to per-
form. Here, it’s auth, the task of authenticating the user.

Control argument This setting controls what PAM does after success
or failure of its action for the current line (requisite in this example).
We’ll get to this shortly.

Module The authentication module that runs for this line, determin-
ing what the line actually does. Here, the pam_shells.so module checks
to see whether the user’s current shell is listed in /eic/shells.

PAM configuration is detailed on the pam.conf(5) manual page. Let’s
look at a few of the essentials.

System Configuration: Logging, System Time, Batch Jobs, and Users 193

194

Chapter 7

Function Types

A user application can ask PAM to perform one of the following four
functions:

auth Authenticate a user (see if the user is who they say they are).

account Check user account status (whether the user is authorized to
do something, for example).

session Perform something only for the user’s current session (such as
displaying a message of the day).

password Change a user’s password or other credentials.

For any configuration line, the module and function together deter-
mine PAM’s action. A module can have more than one function type, so
when determining the purpose of a configuration line, always remember to
consider the function and module as a pair. For example, the pam_unix.so
module checks a password when performing the auth function, but it sets a
password when performing the password function.

Control Arguments and Stacked Rules

One important feature of PAM is that the rules specified by its configura-
tion lines stack, meaning that you can apply many rules when performing a
function. This is why the control argument is important: the success or fail-
ure of an action in one line can impact subsequent lines or cause the entire
function to succeed or fail.

There are two kinds of control arguments: the simple syntax and a
more advanced syntax. Here are the three major simple syntax control
arguments that you’ll find in a rule:

sufficient If this rule succeeds, the authentication is successful, and
PAM doesn’t need to look at any more rules. If the rule fails, PAM pro-
ceeds to additional rules.

requisite If this rule succeeds, PAM proceeds to additional rules. If
the rule fails, the authentication is unsuccessful, and PAM doesn’t need
to look at any more rules.

required If this rule succeeds, PAM proceeds to additional rules. If
the rule fails, PAM proceeds to additional rules but will always return
an unsuccessful authentication regardless of the end result of the addi-
tional rules.

Continuing with the preceding example, here is an example stack for
the chsh authentication function:

auth sufficient pam_rootok.so
auth requisite pam_shells.so
auth sufficient pam_unix.so
auth required pam_deny.so

With this configuration, when the chsh command asks PAM to perform

the authentication function, PAM does the following (see Figure 7-4 for a
flowchart):

1. The pam_rootok.so module checks to see if root is the user trying to authen-
ticate. If so, it immediately succeeds and attempts no further authen-
tication. This works because the control argument is set to sufficient,
meaning that success from this action is good enough for PAM to immedi-
ately report success back to chsh. Otherwise, it proceeds to step 2.

[PAM start: request to authenticate]

pam_rootok.so:
Is root trying to authenticate?

pam_shells.so:
Is shell in /etc/shells?

pam_unix.so:
Did user enter correct password?

pam_deny.so:
Always fail

Y

) \
[Authentication failed] [Authentication successful]

Figure 7-4: PAM rule execution flow

2. The pam_shells.so module checks to see if the user’s shell is listed in
/etc/shells. If it’s not there, the module returns failure, and the requisite

System Configuration: logging, System Time, Batch Jobs, and Users 195

196

NOTE

Chapter 7

control argument indicates that PAM must immediately report this failure
back to chsh and attempt no further authentication. Otherwise, the module
returns success and fulfills the control flag of requisite; proceed to step 3.

3. The pam_unix.so module asks the user for their password and checks
it. The control argument is set to sufficient, so success from this mod-
ule (a correct password) is enough for PAM to report success to chsh.
If the password is incorrect, PAM continues to step 4.

4. The pam_deny.so module always fails, and because the control argument
is set to required, PAM reports failure back to chsh. This is a default for
when there’s nothing left to try. (Note that a required control argument
doesn’t cause PAM to fail its function immediately—it will run any
lines left on its stack—but PAM will always report failure back to the
application.)

Don’t confuse the terms function and action when working with PAM. The func-
tion is the high-level goal: what the user application wants PAM to do (authenticate
a user, for example). An action is a specific step that PAM takes in order to reach that
goal. Just remember that the user application invokes the function first and that PAM
takes care of the particulars with actions.

The advanced control argument syntax, denoted inside square brack-
ets ([1), allows you to manually control a reaction based on the specific
return value of the module (not just success or failure). For details, see the
pam.conf(5) manual page; when you understand the simple syntax, you’ll
have no trouble with the advanced syntax.

Module Arguments

PAM modules can take arguments after the module name. You'll often
encounter this example with the pam_unix.so module:

auth sufficient pam_unix.so nullok

The nullok argument here says that the user can have no password (the
default would be failure if the user has no password).

7.10.2 Tips on PAM Configuration Syntax

Due to its control flow capability and module argument syntax, the PAM
configuration syntax has many features of a programming language and

a certain degree of power. We've only scratched the surface so far, but here
are a few more tips on PAM:

e To find out which PAM modules are present on your system, try
man -k pam_ (note the underscore). It can be difficult to track down
the location of modules. Try the locate pam_unix.so command and
see where that leads you.

e The manual pages contain the functions and arguments for each
module.

e Many distributions automatically generate certain PAM configuration
files, so it may not be wise to change them directly in /et¢/pam.d. Read
the comments in your /etc/pam.d files before editing them; if they’re
generated files, the comments will tell you where they came from.

e The /ete/pam.d/other configuration file defines the default configuration
for any application that lacks its own configuration file. The default is
often to deny everything.

e There are different ways to include additional configuration files in
a PAM configuration file. The @include syntax loads an entire con-
figuration file, but you can also use a control argument to load only
the configuration for a particular function. The usage varies among
distributions.

¢ PAM configuration doesn’t end with module arguments. Some modules
can access additional files in /etc/security, usually to configure per-user
restrictions.

7.10.3 PAM and Passwords

Due to the evolution of Linux password verification over the years, there are
a number of password configuration artifacts that can cause confusion at
times. The first to be aware of is the file /etc/login.defs. This is the configura-
tion file for the original shadow password suite. It contains information
about the encryption algorithm used for the /etc/shadow password file, but it’s
rarely used on a system with PAM installed, because the PAM configuration
contains this information. This said, the encryption algorithm in /etc/login.defs
should match the PAM configuration in the rare case that you run into an
application that doesn’t support PAM.

Where does PAM get its information about the password encryption
scheme? Remember that there are two ways for PAM to interact with pass-
words: the auth function (for verifying a password) and the password func-
tion (for setting a password). It’s easiest to track down the password-setting
parameter. The best way is probably just to grep it:

$ grep password.*unix /etc/pam.d/*

The matching lines should contain pam_unix.so and look something
like this:

password sufficient pam_unix.so obscure sha512

The arguments obscure and sha512 tell PAM what to do when setting
a password. First, PAM checks to see if the password is “obscure” enough
(that is, the password isn’t too similar to the old password, among other
things), and then PAM uses the SHA512 algorithm to encrypt the new
password.

System Configuration: logging, System Time, Batch Jobs, and Users 197

198

711

Chapter 7

But this happens only when a user sets a password, not when PAM is
verifying a password. So how does PAM know which algorithm to use when
authenticating? Unfortunately, the configuration won'’t tell you anything;
there are no encryption arguments for pam_unix.so for the auth function.
The manual pages also tell you nothing.

It turns out that (as of this writing) pam_unix.so simply tries to guess the
algorithm, usually by asking the libcrypt library to do the dirty work of try-
ing a whole bunch of things until something works or there’s nothing left
to try. Therefore, you normally don’t have to worry about the verification
encryption algorithm.

Looking Forward

We’re now at about the midpoint in our progression through this book, hav-
ing covered many of the vital building blocks of a Linux system. The discus-
sion of logging and users on a Linux system has shown you how it’s possible
to divide services and tasks into small, independent chunks that can still
interact to a certain extent.

This chapter dealt almost exclusively with user space, and now we need
to refine our view of user-space processes and the resources they consume.
To do so, we’ll go back into the kernel in Chapter 8.

A CLOSER LOOK AT PROCESSES
AND RESOURCE UTILIZATION

This chapter takes you deeper into the rela-
tionships between processes, the kernel, and

system resources. There are three basic kinds
of hardware resources: CPU, memory, and 1/0.

Processes vie for these resources, and the kernel’s job

is to allocate resources fairly. The kernel itself is also

a resource—a software resource that processes use to

perform tasks such as creating new processes and com-

municating with other processes.

Many of the tools that you see in this chapter are considered
performance-monitoring tools. They’re particularly helpful if your sys-
tem is slowing to a crawl and you're trying to figure out why. However,
you shouldn’t get distracted by performance. Trying to optimize a system

200

8.1

8.2

Chapter 8

that’s already working correctly is a waste of time. The default settings on
most systems are well chosen, so you should change them only if you have
very unusual needs. Instead, concentrate on understanding what the tools
actually measure, and you’ll gain great insight into how the kernel works
and how it interacts with processes.

Tracking Processes

You learned how to use ps in Section 2.16 to list processes running on your
system at a particular time. The ps command lists current processes and
their usage statistics, but it does little to tell you how processes change over
time. Therefore, it won’t immediately help you to determine which process
is using too much CPU time or memory.

The top program provides an interactive interface to the information
that ps displays. It shows the current system status as well as the fields a ps
listing shows, and it updates every second. Perhaps most important, top lists
the most active processes (by default, those currently taking up the most
CPU time) at the top of its display.

You can send commands to top with keystrokes. Its most frequently used
commands deal with changing the sort order or filtering the process list:

Spacebar Updates the display immediately
M Sorts by current resident memory usage
T Sorts by total (cumulative) CPU usage
Sorts by current CPU usage (the default)
Displays only one user’s processes

Selects different statistics to display

v oo g

Displays a usage summary for all top commands

The top keystroke commands are case-sensitive.

Two similar utilities, atop and htop, offer an enhanced set of views and
features. Most of their extra features add functionality found in other tools.
For example, htop shares many of the 1sof command’s abilities described in
the next section.

Finding Open Files with Isof

The 1sof command lists open files and the processes using them. Because
Unix places a lot of emphasis on files, 1sof is among the most useful tools
for finding trouble spots. But 1sof doesn’t stop at regular files—it can list
network resources, dynamic libraries, pipes, and more.

8.2.1 Reading the Isof Output

Running lsof on the command line usually produces a tremendous amount
of output. The following is a fragment of what you might see. This output
(slightly adjusted for readability) includes open files from the systemd (init)
process as well as a running vi process:

lsof

COMMAND PID
systemd
systemd
systemd
systemd
systemd

PR R R R

--snip--
vi 1994
vi 1994

--snip--

USER FD TYPE DEVICE SIZE/OFF NODE NAME

root cwd DIR 8,1 4096 2/

root rtd DIR 8,1 4096 2/

root txt REG 8,1 1595792 9961784 /lib/systemd/systemd

root mem REG 8,1 1700792 9961570 /1ib/x86_64-1linux-gnu/libm-2.27.s0
root mem REG 8,1 121016 9961695 /1ib/x86 64-1inux-gnu/libudev.so.1

juser cwd DIR 8,1 4096 4587522 /home/juser
juser 3u REG 8,1 12288 786440 /tmp/.ff.swp

NOTE

The output lists the following fields in the top row:

COMMAND The command name for the process that holds the file
descriptor.

PID The process ID.
USER The user running the process.

FD This field can contain two kinds of elements. In most of the preced-
ing output, the FD column shows the purpose of the file. The FD field
can also list the file descriptor of the open file—a number that a pro-

cess uses together with the system libraries and kernel to identify and
manipulate a file; the last line shows a file descriptor of 3.

TYPE The file type (regular file, directory, socket, and so on).

DEVICE The major and minor number of the device that holds the file.

SIZE/OFF The file’s size.

NODE The file’s inode number.

NAME The filename.

The Isof(1) manual page contains a full list of what you might see for
each field, but the output should be self-explanatory. For example, look at
the entries with cwd in the FD field. Those lines indicate the current working

directories of the processes. Another example is the very last line, which
shows a temporary file that a user’s vi process (PID 1994) is using.

You can run Isof as root or a regular user, but youwll get more information as root.

A Closer Look at Processes and Resource Utilization 201

202

8.3

Chapter 8

8.2.2 Using Isof

There are two basic approaches to running lsof:

e List everything and pipe the output to a command like less, and then
search for what you're looking for. This can take a while due to the
amount of output generated.

e Narrow down the list that 1sof provides with command-line options.

You can use command-line options to provide a filename as an argument
and have 1sof list only the entries that match the argument. For example,
the following command displays entries for open files in /usrand all of its
subdirectories:

$ lsof +D /usr

To list the open files for a particular process ID, run:

$ lsof -p pid

For a brief summary of 1sof’s many options, run 1sof -h. Most options
pertain to the output format. (See Chapter 10 for a discussion of the 1sof
network features.)

Isof is highly dependent on kernel information. If you perform a distribution update
to both the kernel and 1sof, the updated 1sof might not work until you reboot with the
new kernel.

Tracing Program Execution and System Calls

The tools we’ve seen so far examine active processes. However, if you have
no idea why a program dies almost immediately after starting up, 1sof won’t
help you. In fact, you’d have a difficult time even running lsof concurrently
with a failed command.

The strace (system call trace) and ltrace (library trace) commands
can help you discover what a program attempts to do. Those tools pro-
duce extraordinarily large amounts of output, but once you know what to
look for, you’ll have more information at your disposal for tracking down
problems.

8.3.1 strace

Recall that a system call is a privileged operation that a user-space process
asks the kernel to perform, such as opening and reading data from a file.
The strace utility prints all the system calls that a process makes. To see it in
action, run this command:

$ strace cat /dev/null

By default, strace sends its output to the standard error. If you want to
save the output in a file, use the -o save_file option. You can also redirect by
appending 2> save_file to your command line, but you’ll also capture any
standard error from the command you’re examining.

In Chapter 1, you learned that when one process wants to start another
process, it invokes the fork() system call to spawn a copy of itself, and then
the copy uses a member of the exec() family of system calls to start running
a new program. The strace command begins working on the new process
(the copy of the original process) just after the fork() call. Therefore, the
first lines of the output from this command should show execve() in action,
followed by a memory initialization call, brk(), as follows:

execve("/bin/cat", ["cat", "/dev/null"], ox7ffefobe0248 /* 59 vars */) = 0
brk(NULL) = 0x561e83127000

The next part of the output deals primarily with loading shared librar-
ies. You can ignore this unless you really want to dig deep into the shared
library system:

access("/etc/1d.so.nohwcap”, F_OK) = -1 ENOENT (No such file or
directory)

openat(AT_FDCWD, "/etc/ld.so.cache", O RDONLY|O CLOEXEC) = 3
fstat(3, {st_mode=S IFREG|0644, st size=119531, ...}) = 0

mmap(NULL, 119531, PROT READ, MAP PRIVATE, 3, 0) = 0x7fa9db241000
close(3) =0

--snip--

openat(AT_FDCWD, "/1ib/x86_64-linux-gnu/libc.so.6", O RDONLY|O CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0o\o\0o\0o\0\3\0>\0\1\0\0\0\260\34\2\0\0o\0o\0O\0". .
., 832) = 832

In addition, skip past the mmap output until you get to the lines near the
end of the output that look like this:

fstat(1, {st_mode=S IFCHR|0620, st rdev=makedev(0x88, 1), ...}) = 0
openat(AT_FDCWD, "/dev/null", O RDONLY) = 3

fstat(3, {st_mode=S IFCHR|0666, st _rdev=makedev(0x1, 3), ...}) = 0
fadvise64(3, 0, 0, POSIX_FADV_SEQUENTIAL) = 0

mmap(NULL, 139264, PROT_READ|PROT WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7fa9db21b000

read(3, "", 131072) =0
munmap(0x7fa9db21b000, 139264) =0
close(3) =0
close(1) =0
close(2) =0

?

exit_group(0) =
+++ exited with 0 +++

This part of the output shows the command at work. First, look at the
openat() call (a slight variant of open()), which opens a file. The 3 is a result
that means success (3 is the file descriptor that the kernel returns after opening

A Closer Look at Processes and Resource Utilization 203

204

8.4

Chapter 8

the file). Below that, you can see where cat reads from /dev/null (the read() call,
which also has 3 as the file descriptor). Then there’s nothing more to read, so
the program closes the file descriptor and exits with exit_group().

What happens when the command encounters an error? Try strace cat
not_a_file instead and examine the open() call in the resulting output:

openat (AT_FDCWD, "not_a file", O RDONLY) = -1 ENOENT (No such file or
directory)

Because open() couldn’t open the file, it returned -1 to signal an error.
You can see that strace reports the exact error and gives you a short descrip-
tion of the error.

Missing files are the most common problem with Unix programs, so if
the system log and other log information aren’t very helpful and you have
nowhere else to turn when you’re trying to track down a missing file, strace
can be of great use. You can even use it on daemons that fork or detach
themselves. For example, to track down the system calls of a fictitious dae-
mon called crummyd, enter:

$ strace -o crummyd_strace -ff crummyd

In this example, the -o option to strace logs the action of any child pro-
cess that crummyd spawns into crummyd_strace.pid, where pid is the process ID
of the child process.

8.3.2 Itrace

The ltrace command tracks shared library calls. The output is similar to
that of strace, which is why it’s being mentioned here, but it doesn’t track
anything at the kernel level. Be warned that there are many more shared
library calls than system calls. You’ll definitely need to filter the output,
and ltrace itself has many built-in options to assist you.

See Section 15.1.3 for more on shared libraries. The 1trace command doesn’t work on
statically linked binaries.

Threads

In Linux, some processes are divided into pieces called threads. A thread

is very similar to a process—it has an identifier (thread ID, or TID), and the
kernel schedules and runs threads just like processes. However, unlike sepa-
rate processes, which usually don’t share system resources such as memory
and I/O connections with other processes, all threads inside a single pro-
cess share their system resources and some memory.

8.4.1 Single-Threaded and Multithreaded Processes

Many processes have only one thread. A process with one thread is single-
threaded, and a process with more than one thread is multithreaded. All

NOTE

processes start out single-threaded. This starting thread is usually called
the main thread. The main thread may start new threads, making the pro-
cess multithreaded, similar to the way a process can call fork() to start a
new process.

1t’s rare to refer to threads at all when a process is single-threaded. This book doesn’t
mention threads unless multithreaded processes make a difference in what you see or
experience.

The primary advantage of a multithreaded process is that when the
process has a lot to do, threads can run simultaneously on multiple proces-
sors, potentially speeding up computation. Although you can also achieve
simultaneous computation with multiple processes, threads start faster than
processes, and it’s often easier or more efficient for threads to intercommu-
nicate using their shared memory than it is for processes to communicate
over a channel, such as a network connection or a pipe.

Some programs use threads to overcome problems managing multiple
I/0 resources. Traditionally, a process would sometimes use fork() to start a
new subprocess in order to deal with a new input or output stream. Threads
offer a similar mechanism without the overhead of starting a new process.

8.4.2 Viewing Threads

By default, the output from the ps and top commands shows only processes.
To display the thread information in ps, add the m option. Listing 8-1 shows
some sample output.

$psm
PID TTY STAT TIME COMMAND

3587 pts/3 - 0:00 bash®
- - Ss 0:00 -

3592 pts/4 - 0:00 bash®
- - Ss 0:00 -

12534 tty7 - 668:30 /usr/lib/xorg/Xorg -core :0©
- - Ssl+ 659:55 -
- - Ssl+ 0:00 -
- - Ssl+ 0:00 -
- - Ssl+ 8:35 -

Listing 8-1: Viewing threads with ps m

This listing shows processes along with threads. Each line with a num-
ber in the PID column (at @, @, and ®) represents a process, as in the
normal ps output. The lines with dashes in the PID column represent the
threads associated with the process. In this output, the processes at @
and @ have only one thread each, but process 12534 at ® is multithreaded,
with four threads.

A Closer Look at Processes and Resource Utilization 205

206

8.5

Chapter 8

If you want to view the TIDs with ps, you can use a custom output for-
mat. Listing 8-2 shows only the PIDs, TIDs, and command:

$ ps m -o pid,tid,command
PID TID COMMAND

3587 - bash
- 3587 -
3592 - bash
- 3592 -
12534 - /usr/lib/xorg/Xorg -core :0
- 12534 -
- 13227 -
- 14443 -
- 14448 -

Listing 8-2: Showing PIDs and TIDs with ps m

The sample output in this listing corresponds to the threads shown in
Listing 8-1. Notice that the TIDs of the single-threaded processes are iden-
tical to the PIDs; this is the main thread. For the multithreaded process
12534, thread 12534 is also the main thread.

Normally, you won't interact with individual threads as you would processes. You
need to know a lot about how a multithreaded program was written in order to act on
one thread at a time, and even then, doing so might not be a good idea.

Threads can confuse things when it comes to resource monitoring
because individual threads in a multithreaded process can consume
resources simultaneously. For example, top doesn’t show threads by default;
you’ll need to press H to turn it on. For most of the resource monitoring
tools that youre about to see, you’ll have to do a little extra work to turn on
the thread display.

Introduction to Resource Monitoring

Now we’ll discuss some topics in resource monitoring, including processor
(CPU) time, memory, and disk I/O. We’ll examine utilization on a system-
wide scale, as well as on a per-process basis.

Many people touch the inner workings of the Linux kernel in the inter-
est of improving performance. However, most Linux systems perform well
under a distribution’s default settings, and you can spend days trying to
tune your machine’s performance without meaningful results, especially if
you don’t know what to look for. So rather than think about performance
as you experiment with the tools in this chapter, think about seeing the
kernel in action as it divides resources among processes.

8.5.1 Measuring CPU Time

To monitor one or more specific processes over time, use the -p option to
top, with this syntax:

$ top -p pid1 [-p pid2 ...]

To find out how much CPU time a command uses during its lifetime,
use time. Unfortunately, there is some confusion here, because most shells
have a built-in time command that doesn’t provide extensive statistics, and
there’s a system utility at /usr/bin/time. You’ll probably encounter the bash
shell built-in first, so try running time with the 1s command:

$ time 1s

After 1s terminates, time should print output like the following:

real 0mo0.442s
user 0m0.052s
sys 0mo.091s

User time (user) is the number of seconds that the CPU has spent run-
ning the program’s own code. Some commands run so quickly that the CPU
time is close to 0. The system time (sys or system) is how much time the kernel
spends doing the process’s work (for example, reading files and directories).
Finally, real time (real) (also called elapsed time) is the total time it took to
run the process from start to finish, including the time that the CPU spent
doing other tasks. This number is normally not very useful for performance
measurement, but subtracting the user and system time from elapsed time
can give you a general idea of how long a process spends waiting for system
and external resources. For example, the time spent waiting for a network
server to respond to a request would show up in the elapsed time, but not in
the user or system time.

8.5.2 Adjusting Process Priorities

You can change the way the kernel schedules a process in order to give
the process more or less CPU time than other processes. The kernel
runs each process according to its scheduling priority, which is a number
between —20 and 20, with —20 being the foremost priority. (Yes, this can
be confusing.)

The ps -1 command lists the current priority of a process, but it’s a little
easier to see the priorities in action with the top command, as shown here:

$ top

Tasks: 244 total, 2 running, 242 sleeping, 0 stopped, 0 zombie

Cpu(s): 31.7%us, 2.8%sy, 0.0%ni, 65.4%id, 0.2%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 6137216k total, 5583560k used, 553656k free, 72008k buffers

Swap: 4135932k total, 694192k used, 3441740k free, 767640k cached

A Closer Look at Processes and Resource Utilization 207

208

Chapter 8

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
28883 bri 20 0 1280m 763m 32m S 58 12.7 213:00.65 chromium-browse
1175 root 20 0 210m 43m 28m R 44 0.7 14292:35 Xorg
4022 bri 20 0 413m 201m 28m S 29 3.4 3640:13 chromium-browse
4029 bri 20 0 378m 206m 19m S 2 3.5 32:50.86 chromium-browse
3971 bri 20 0 881m 359m 32m S 2 6.0 563:06.88 chromium-browse
5378 bri 20 0 152m 10m 7064 S 1 0.2 24:30.21 xfce4-session
3821 bri 200 0 312m 37m 14m S 0 0.6 29:25.57 soffice.bin
4117 bri 20 0 321m 105m 18m S 0 1.8 34:55.01 chromium-browse
4138 bri 20 0 331m 99m 21m S 0 1.7 121:44.19 chromium-browse
4274 bri 20 0 232m 60m 13m S 0 1.0 37:33.78 chromium-browse
4267 bri 20 0 1102m 844m 11m S 0 14.1 29:59.27 chromium-browse
2327 bri 20 0 301m 43m 16m S 0 0.7 109:55.65 xfce4-panel

In this top output, the PR (priority) column lists the kernel’s current
schedule priority for the process. The higher the number, the less likely the
kernel is to schedule the process if others need CPU time. The schedule pri-
ority alone doesn’t determine the kernel’s decision to give CPU time to a pro-
cess, however, and the kernel may also change the priority during program
execution according to the amount of CPU time the process consumes.

Next to the priority column is the NI (nice value) column, which gives a
hint to the kernel’s scheduler. This is what you care about when trying to
influence the kernel’s decision. The kernel adds the nice value to the cur-
rent priority to determine the next time slot for the process. When you set
the nice value higher, youre being “nicer” to other processes because the
kernel prioritizes them.

By default, the nice value is 0. Now, say you're running a big computa-
tion in the background that you don’t want to bog down your interactive
session. To make that process take a back seat to other processes and run
only when the other tasks have nothing to do, you can change the nice
value to 20 with the renice command (where pid is the process ID of the
process that you want to change):

$ renice 20 pid

If you're the superuser, you can set the nice value to a negative number,
but doing so is almost always a bad idea because system processes may not
get enough CPU time. In fact, you probably won’t need to alter nice values
much because many Linux systems have only a single user, and that user
doesn’t perform much real computation. (The nice value was much more
important back when there were many users on a single machine.)

8.5.3 Measuring CPU Performance with Load Averages

Overall CPU performance is one of the easier metrics to measure. The load
averageis the average number of processes currently ready to run. That is, it
is an estimate of the number of processes that are capable of using the CPU at
any given time—this includes processes that are running and those that are
waiting for a chance to use the CPU. When thinking about a load average,
keep in mind that most processes on your system are usually waiting for input

(from the keyboard, mouse, or network, for example), meaning they’re not
ready to run and shouldn’t contribute anything to the load average. Only pro-
cesses that are actually doing something affect the load average.

Using uptime

The uptime command tells you three load averages in addition to how long
the kernel has been running:

$ uptime
. up 91 days, ... load average: 0.08, 0.03, 0.01

The three bolded numbers are the load averages for the past 1 minute,
5 minutes, and 15 minutes, respectively. As you can see, this system isn’t very
busy: an average of only 0.01 processes have been running across all pro-
cessors for the past 15 minutes. In other words, if you had just one proces-
sor, it was running user-space applications for only 1 percent of the last 15
minutes.

Traditionally, most desktop systems would exhibit a load average of
about 0 when you were doing anything except compiling a program or play-
ing a game. A load average of 0 is usually a good sign, because it means that
your processor isn’t being challenged and you’re saving power.

However, user interface components on current desktop systems tend to
occupy more of the CPU than those in the past. In particular, certain web-
sites (and especially their advertisements) cause web browsers to become
resource hogs.

If a load average goes up to around 1, a single process is probably using
the CPU nearly all of the time. To identify that process, use the top com-
mand; the process will usually rise to the top of the display.

Most modern systems have more than one processor core or CPU, so
multiple processes can easily run simultaneously. If you have two cores,

a load average of 1 means that only one of the cores is likely active at any
given time, and a load average of 2 means that both cores have just enough
to do all of the time.

Managing High Loads

A high load average doesn’t necessarily mean that your system is having
trouble. A system with enough memory and I/O resources can easily handle
many running processes. If your load average is high and your system still
responds well, don’t panic; the system just has a lot of processes sharing the
CPU. The processes have to compete with one another for processor time,
and as a result, they’ll take longer to perform their computations than they
would if they were each allowed to use the CPU all the time. Another case
where a high load average might be normal is with a web or compute server,
where processes can start and terminate so quickly that the load average
measurement mechanism can’t function effectively.

However, if the load average is very high and you sense that the sys-
tem is slowing down, you might be running into memory performance

A Closer Look at Processes and Resource Utilization 209

210

Chapter 8

problems. When the system is low on memory, the kernel can start to thrash,
or rapidly swap memory to and from the disk. When this happens, many
processes will become ready to run, but their memory might not be avail-
able, so they’ll remain in the ready-to-run state (contributing to the load
average) for much longer than they normally would. Next we’ll look at why
this can happen by exploring memory in more detail.

8.5.4 Monitoring Memory Status

One of the simplest ways to check your system’s memory status as a whole is
to run the free command or view /proc/meminfo to see how much real mem-
ory is being used for caches and buffers. As just mentioned, performance
problems can arise from memory shortages. If not much cache/buffer
memory is being used (and the rest of the real memory is taken), you may
need more memory. However, it’s too easy to blame a shortage of memory
for every performance problem on your machine.

How Memory Works

As Chapter 1 explained, the CPU has a memory management unit (MMU)
to add flexibility in memory access. The kernel assists the MMU by break-
ing down the memory used by processes into smaller chunks called pages.
The kernel maintains a data structure, called a page table, that maps a pro-
cess’s virtual page addresses to real page addresses in memory. As a process
accesses memory, the MMU translates the virtual addresses used by the pro-
cess into real addresses based on the kernel’s page table.

A user process doesn’t actually need all of its memory pages to be imme-
diately available in order to run. The kernel generally loads and allocates
pages as a process needs them; this system is known as on-demand paging or
just demand paging. To see how this works, consider how a program starts and
runs as a Ne€w process:

1. The kernel loads the beginning of the program’s instruction code into
memory pages.

2. The kernel may allocate some working-memory pages to the new process.

3. As the process runs, it might reach a point where the next instruction in
its code isn’t in any of the pages that the kernel initially loaded. At this
point, the kernel takes over, loads the necessary page into memory, and
then lets the program resume execution.

4. Similarly, if the program requires more working memory than was ini-
tially allocated, the kernel handles it by finding free pages (or by mak-
ing room) and assigning them to the process.

You can get a system’s page size by looking at the kernel configuration:

$ getconf PAGE_SIZE
4096

This number is in bytes, and 4k is typical for most Linux systems.

The kernel does not arbitrarily map pages of real memory to virtual
addresses; that is, it does not put all of the available pages into one big pool
and allocate from there. Real memory has many divisions that depend on
hardware limitations, kernel optimization of contiguous pages, and other
factors. However, you shouldn’t worry about any of this when you’re just get-
ting started.

Page Faults

If a memory page isn’t ready when a process wants to use it, the process trig-
gers a page fault. In the event of a page fault, the kernel takes control of the
CPU from the process in order to get the page ready. There are two kinds
of page faults: minor and major.

Minor page faults
A minor page fault occurs when the desired page is actually in main
memory, but the MMU doesn’t know where it is. This can happen
when the process requests more memory or when the MMU doesn’t
have enough space to store all of the page locations for a process (the
MMU’s internal mapping table is usually quite small). In this case, the
kernel tells the MMU about the page and permits the process to con-
tinue. Minor page faults are nothing to worry about, and many occur as
a process runs.

Major page faults
A major page fault occurs when the desired memory page isn’t in main
memory at all, which means that the kernel must load it from the disk
or some other slow storage mechanism. A lot of major page faults will
bog the system down, because the kernel must do a substantial amount
of work to provide the pages, robbing normal processes of their chance
to run.

Some major page faults are unavoidable, such as those that occur when
you load the code from disk when running a program for the first time.
The biggest problems happen when you start running out of memory,
which forces the kernel to start swapping pages of working memory

out to the disk in order to make room for new pages and can lead to
thrashing.

You can drill down to the page faults for individual processes with the
ps, top, and time commands. You’ll need to use the system version of time
(/usr/bin/time) instead of the shell built-in. The following shows a simple
example of how the time command displays page faults (the output of the cal
command is irrelevant, so we’re discarding it by redirecting it to /dev/null):

$ /usr/bin/time cal > /dev/null
0.00user 0.00system 0:00.06elapsed 0%CPU (Oavgtext+Oavgdata 3328maxresident)k
648inputs+ooutputs (2major+254minor)pagefaults Oswaps

A Closer Look at Processes and Resource Utilization 21

As you can see from the bolded text, when this program ran, there were
2 major page faults and 254 minor ones. The major page faults occurred
when the kernel needed to load the program from the disk for the first
time. If you ran this command again, you probably wouldn’t get any major
page faults because the kernel would have cached the pages from the disk.

If you’d rather see the page faults of processes as they’re running, use top
or ps. When running top, use f to change the displayed fields and select nMaj
as one of the columns to display the number of major page faults. Selecting
vMj (the number of major page faults since the last update) can be helpful if
you're trying to track down a process that might be misbehaving.

When using ps, you can use a custom output format to view the page
faults for a particular process. Here’s an example for PID 20365:

$ ps -o pid,min_flt,maj_flt 20365
PID MINFL MAJFL
20365 834182 23

The MINFL and MAJFL columns show the numbers of minor and major
page faults. Of course, you can combine this with any other process selec-
tion options, as described in the ps(1) manual page.

Viewing page faults by process can help you zero in on certain problem-
atic components. However, if you're interested in your system performance
as a whole, you need a tool to summarize CPU and memory action across all
processes.

8.5.5 Monitoring CPU and Memory Performance with vmstat

Among the many tools available to monitor system performance, the vmstat
command is one of the oldest, with minimal overhead. You'll find it handy
for getting a high-level view of how often the kernel is swapping pages in
and out, how busy the CPU is, and how I/O resources are being utilized.

The trick to unlocking the power of vmstat is to understand its output.
For example, here’s some output from vmstat 2, which reports statistics every
two seconds:

$ vmstat 2
procs --------- memory-=---=------ --- swap-- ----- io---- -system-- ---- cpu----
r b swpd free buff cache si so bi bo in c¢s us sy id wa
2 0 320416 3027696 198636 1072568 0 0 1 1 2 015 283 O
2 0 320416 3027288 198636 1072564 0 0 0 1182 407 636 1 099 O
1 0 320416 3026792 198640 1072572 0 0 0 58 281 537 1 099 O
0 0 320416 3024932 198648 1074924 0 0 0 308 318 541 0 099 1
0 0 320416 3024932 198648 1074968 0 0 0 0 208 416 0 099 O
0 0 320416 3026800 198648 1072616 0 0 0 0 207 389 0 0100 O
The output falls into categories: procs for processes, memory for memory
usage, swap for the pages pulled in and out of swap, io for disk usage, system
for the number of times the kernel switches into kernel code, and cpu for
the time used by different parts of the system.
212 Chapter 8

The preceding output is typical for a system that isn’t doing much.
You’ll usually start looking at the second line of output—the first one is
an average for the entire uptime of the system. For example, here the sys-
tem has 320,416KB of memory swapped out to the disk (swpd) and around
3,027,000KB (3GB) of real memory free. Even though some swap space is in
use, the zero-valued si (swap-in) and so (swap-out) columns report that the
kernel is not currently swapping anything in or out from the disk. The buff
column indicates the amount of memory that the kernel is using for disk
buffers (see Section 4.2.5).

On the far right, under the CPU heading, you can see the distribu-
tion of CPU time in the us, sy, id, and wa columns. Respectively, these list
the percentage of time the CPU is spending on user tasks, system (kernel)
tasks, idle time, and waiting for I/O. In the preceding example, there aren’t
too many user processes running (they’re using a maximum of 1 percent
of the CPU); the kernel is doing practically nothing, and the CPU is sitting
around doing nothing 99 percent of the time.

Listing 8-3 shows what happens when a big program starts up.

b swpd
0 320412
0 320412
0 320412
1 320412
2 320284
1 320252
3 320244

--Mmemory-------=--- --- swap-- ----- io---- -system-- ---- cpu----

free buff cache si so bi bo in cs us sy id wa
2861252 198920 1106804 0 0 0 0 2477 448125 272 0O
2861748 198924 1105624 0 0 0 40 2206 3966 26 2 72 O
2860508 199320 1106504 0 0 210 18 2201 3904 26 2 71 1
2817860 199332 1146052 0 0 19912 0 2446 4223 26 3 63 8
2791608 200612 1157752 202 0 4960 854 3371 5714 27 3 51 18 @®
2772076 201076 1166656 10 0 2142 1190 4188 7537 30 3 53 14
2727632 202104 1175420 20 0 1890 216 4631 8706 36 4 46 14

Listing 8-3: Memory activity

As you can see at @ in Listing 8-3, the CPU starts to see some usage
for an extended period, especially from user processes. Because there is
enough free memory, the amount of cache and buffer space used starts to
increase as the kernel uses the disk more.
Later on, we see something interesting: notice at @ that the kernel

pulls some pages into memory that were once swapped out (the si column).
This means the program that just ran probably accessed some pages shared
by another process, which is common—many processes use the code in cer-
tain shared libraries only when starting up.

Also notice from the b column that a few processes are blocked (pre-
vented from running) while waiting for memory pages. Overall, the amount
of free memory is decreasing, but it’s nowhere near being depleted. There’s
also a fair amount of disk activity, as indicated by the increasing numbers in
the bi (blocks in) and bo (blocks out) columns.

The output is quite different when you run out of memory. As the free
space depletes, both the buffer and cache sizes decrease because the ker-
nel increasingly needs the space for user processes. Once there is nothing
left, you'll see activity in the so (swapped out) column as the kernel starts
moving pages onto the disk, at which point nearly all of the other output
columns change to reflect the amount of work the kernel is doing. You see

A Closer Look at Processes and Resource Utilization 213

more system time, more data going in and out of the disk, and more pro-
cesses blocked because the memory they want to use isn’t available (it has
been swapped out).

We haven’t explored all of the vmstat output columns. You can dig
deeper into them in the vmstat(8) manual page, but you might need to
learn more about kernel memory management first from a class or a book
like Silberschatz, Gagne, and Galvin’s Operating System Concepts, 10th edition
(Wiley, 2018), in order to understand them.

8.5.6 1/0 Monitoring

By default, vmstat provides some general 1/O statistics. Although you can get
very detailed per-partition resource usage with vmstat -d, you might be over-
whelmed by the amount of output resulting from this option. Instead, try a
tool just for I/O called iostat.

Many of the 1/0 utilities we’ll discuss here aren’t built into most distributions by
default, but they’re easily installed.

Using iostat

Like vmstat, when run without any options, iostat shows the statistics for
your machine’s current uptime:

$ iostat

[kernel information]

avg-cpu: Z%user %nice %system %iowait Zsteal %idle
4.46 0.01 0.67 0.31 0.00 94.55

Device: tps kB_read/s kB wrtn/s kB read kB_wrtn
sda 4.67 7.28 49.86 9493727 65011716
sde 0.00 0.00 0.00 1230 0

The avg-cpu part at the top reports the same CPU utilization informa-
tion as other utilities that you've seen in this chapter, so skip down to the
bottom, which shows you the following for each device:

tps Average number of data transfers per second

kB_read/s Average number of kilobytes read per second

kB_wrtn/s Average number of kilobytes written per second

kB_read Total number of kilobytes read

kB_wrtn Total number of kilobytes written

Another similarity to vmstat is that you can provide an interval argu-
ment, such as iostat 2, to give an update every two seconds. When using an

interval, you might want to display only the device report by using the -d
option (such as iostat -d 2).

214 Chapter 8

By default, the iostat output omits partition information. To show all of
the partition information, use the -p ALL option. Because a typical system has
many partitions, you’ll get a lot of output. Here’s part of what you might see:

$ iostat -p ALL

--snip--

Device: tps kB read/s kB wrtn/s kB read kB wrtn
--snip--

sda 4.67 7.27 49.83 9496139 65051472
sdal 4.38 7.16 49.51 9352969 64635440
sda2 0.00 0.00 0.00 6 0
sdas 0.01 0.11 0.32 141884 416032
scdo 0.00 0.00 0.00 0 0
--snip--

sde 0.00 0.00 0.00 1230 0

In this example, sdai, sda2, and sdas are all partitions of the sda disk,
so the read and written columns will have some overlap. However, the
sum of the partition columns won’t necessarily add up to the disk column.
Although a read from sda1 also counts as a read from sda, keep in mind that
you can read from sda directly, such as when reading the partition table.

Per-Process 1/0 Utilization and Monitoring: iotop

If you need to dig even deeper to see I/O resources used by individual
processes, the iotop tool can help. Using iotop is similar to using top. It gen-
erates a continuously updating display that shows the processes using the
most I/O, with a general summary at the top:

iotop
Total DISK READ: 4.76 K/s | Total DISK WRITE: 333.31 K/s
TID PRIO USER DISK READ DISK WRITE SWAPIN 10> COMMAND
260 be/3 root 0.00 B/s 38.09 K/s 0.00 % 6.98 % [jbd2/sda1-8]
2611 be/4 juser 4.76 K/s 10.32 K/s 0.00 % 0.21 % zeitgeist-daemon
2636 be/4 juser 0.00 B/s 84.12 K/s 0.00 % 0.20 % zeitgeist-fts
1329 be/4 juser 0.00 B/s 65.87 K/s 0.00 % 0.03 % soffice.b™ash-
pipe=6
6845 be/4 juser 0.00 B/s 812.63 B/s 0.00 % 0.00 % chromium-browser
19069 be/4 juser 0.00 B/s 812.63 B/s 0.00 % 0.00 % rhythmbox

Along with the user, command, and read/write columns, notice that
there’s a TID column instead of a PID column. The iotop tool is one of the
few utilities that displays threads instead of processes.

The PRIO (priority) column indicates the I/O priority. It’s similar to the
CPU priority that you've already seen, but it affects how quickly the kernel
schedules I/O reads and writes for the process. In a priority such as be/4,
the be part is the scheduling class, and the number is the priority level. As
with CPU priorities, lower numbers are more important; for example, the
kernel allows more I/O time for a process with priority be/3 than one with
priority be/4.

A Closer Look at Processes and Resource Utilization 215

216

8.6

Chapter 8

The kernel uses the scheduling class to add more control for I/O sched-
uling. You'll see three scheduling classes from iotop:

be Best effort. The kernel does its best to schedule 1/0 fairly for this
class. Most processes run under this I/O scheduling class.

rt Real time. The kernel schedules any real-time I/O before any other
class of I/0, no matter what.

idle Idle. The kernel performs I/O for this class only when there is no
other I/O to be done. The idle scheduling class has no priority level.

You can check and change the 1/0 priority for a process with the ionice
utility; see the ionice(l) manual page for details. You’ll probably never need
to worry about the I/O priority, though.

8.5.7 Per-Process Monitoring with pidstat

You've seen how you can monitor specific processes with utilities such as

top and iotop. However, this display refreshes over time, and each update
erases the previous output. The pidstat utility allows you to see the resource
consumption of a process over time in the style of vmstat. Here’s a simple
example for monitoring process 1329, updating every second:

$ pidstat -p 1329 1
Linux 5.4.0-48-generic (duplex) 11/09/2020 _X86_64 (4 CPU)

09:26:55 PM UID PID %usr %system Z%guest %CPU CPU Command

09:27:03 PM 1000 1329 8.00 0.00 0.00 8.00 1 myprocess
09:27:04 PM 1000 1329 0.00 0.00 0.00 0.00 3 myprocess
09:27:05 PM 1000 1329 3.00 0.00 0.00 3.00 1 myprocess
09:27:06 PM 1000 1329 8.00 0.00 0.00 8.00 3 myprocess
09:27:07 PM 1000 1329 2.00 0.00 0.00 2.00 3 myprocess
09:27:08 PM 1000 1329 6.00 0.00 0.00 6.00 2 myprocess

The default output shows the percentages of user and system time and
the overall percentage of CPU time, and it even tells you on which CPU the
process was running. (The %guest column here is somewhat odd—it’s the
percentage of time that the process spent running something inside a virtual
machine. Unless youre running a virtual machine, don’t worry about this.)

Although pidstat shows CPU utilization by default, it can do much
more. For example, you can use the -r option to monitor memory and -d
to turn on disk monitoring. Try them out, and then look at the pidstat(1)
manual page to see even more options for threads, context switching, or
just about anything else that we’ve talked about in this chapter.

Control Groups (cgroups)

So far, you've seen how to view and monitor resource usage, but what if you’d
like to limit what processes can consume beyond what you saw with the nice

NOTE

command? There are several traditional systems for doing so, such as the
POSIX rlimit interface, but the most flexible option for most types of resource
limits on Linux systems is now the ¢group (control group) kernel feature.

The basic idea is that you place several processes into a cgroup, which
allows you to manage the resources that they consume on a group-wide
basis. For example, if you want to limit the amount of memory that a set of
processes may cumulatively consume, a cgroup can do this.

After creating a cgroup, you can add processes to it, and then use a
controller to change how those processes behave. For example, there is a cpu
controller allowing you to limit the processor time, a memory controller, and
so on.

Although systemd makes extensive use of the cgroup feature and most (if not all) of the
cgroups on your system may be managed by systemd, cgroups are in kernel space and
do not depend on systemd.

8.6.1 Differentiating Between cgroup Versions

There are two versions of cgroups, 1 and 2, and unfortunately, both are cur-
rently in use and can be configured simultaneously on a system, leading to
potential confusion. Aside from a somewhat different feature set, the struc-
tural differences between the versions can be summed up as follows:

e In cgroups vl, each type of controller (cpu, memory, and so on) has its
own set of cgroups. A process can belong to one cgroup per controller,
meaning that a process can belong to multiple cgroups. For example, in
vl, a process can belong to a cpu cgroup and a memory cgroup.

e In cgroups v2, a process can belong to only one cgroup. You can set up
different types of controllers for each cgroup.

To visualize the difference, consider three sets of processes, A, B, and C.
We want to use the cpu and memory controllers on each of them. Figure 8-1
shows the schematic for cgroups vl. We need six cgroups total, because each
cgroup is limited to a single controller.

CPU controllers Memory controllers
cgroup Al cgroup A2
cgroup B1 cgroup B2
cgroup C1 cgroup C2

Figure 8-1: cgroups v1. A process may belong to one cgroup per controller.

A Closer Look at Processes and Resource Utilization 217

218

Chapter 8

Figure 8-2 shows how to do it in cgroups v2. We need only three
cgroups, because we can set up multiple controllers per cgroup.

cgroup A cgroup B cgroup C
CPU controller CPU controller CPU controller
Memory controller Memory controller Memory controller

Figure 8-2: cgroups v2. A process may belong to only one cgroup.

You can list the vl and v2 cgroups for any process by looking at its
cgroup file in /proc/<pid>. You can start by looking at your shell’s cgroups
with this command:

$ cat /proc/self/cgroup

12:rdma:/

11:net_cls,net prio:/

10:perf event:/

9:cpuset:/

8:cpu,cpuacct:/user.slice

7:blkio:/user.slice

6:memory:/user.slice
5:pids:/user.slice/user-1000.slice/session-2.scope
4:devices:/user.slice

3:freezer:/

2:hugetlb:/testcgroup ®

1:name=systemd: /user.slice/user-1000.slice/session-2.scope
0::/user.slice/user-1000.slice/session-2.scope

Don’t be alarmed if the output is significantly shorter on your system;
this just means that you probably have only cgroups v2. Every line of output

here starts with a number and is a different cgroup. Here are some pointers

on how to read it:

e Numbers 2-12 are for cgroups vl. The controllers for those are listed
next to the number.

e Number 1 is also for version 1, but it does not have a controller. This
cgroup is for management purposes only (in this case, systemd config-
ured it).

e The last line, number 0, is for cgroups v2. No controllers are visible

here. On a system that doesn’t have cgroups vl, this will be the only line

of output.
e Names are hierarchical and look like parts of file paths. You can see in

this example that some of the cgroups are named /user.slice and others

Juser.slice/user-1000.slice/session-2.scope.

NOTE

e The name /testcgroup @ was created to show that in cgroups vl, the
cgroups for a process can be completely independent.

e Names under user.slice that include session are login sessions, assigned by
systemd. You’ll see them when you’re looking at a shell’s cgroups. The
cgroups for your system services will be under system.slice.

You may have surmised that cgroups vl has flexibility in one respect
over v2 because you can assign different combinations of cgroups to pro-
cesses. However, it turns out that no one actually used them this way, and
this approach was more complicated to set up and implement than simply
having one cgroup per process.

Because cgroups vl is being phased out, our discussion will focus on
cgroups v2 from this point forward. Be aware that if a controller is being
used in cgroups vl, the controller cannot be used in v2 at the same time
due to potential conflicts. This means that the controller-specific parts of
what we’re about to discuss won’t work correctly if your system still uses v1,
but you should still be able to follow along with the vl equivalents if you
look in the right place.

8.6.2 Viewing cgroups

Unlike the traditional Unix system call interface for interacting with the
kernel, cgroups are accessed entirely through the filesystem, which is usu-
ally mounted as a cgroup? filesystem under /sys/fs/cgroup. (If you're also run-
ning cgroups vl, this will probably be under /sys/fs/cgroup/unified.)

Let’s explore the cgroup setup of a shell. Open a shell and find its
cgroup from /proc/self/cgroup (as shown earlier). Then look in /sys/fs/cgroup
(or /sys/fs/cgroup/unified). You'll find a directory with that name; change to it
and have a look around:

$ cat /proc/self/cgroup
0::/user.slice/user-1000.slice/session-2.scope

$ cd /sys/fs/cgroup/user.slice/user-1000.slice/session-2.scope/
$ 1s

A cgroup name can be quite long on desktop environments that like to create a new
cgroup for each new application launched.

Among the many files that can be here, the primary cgroup interface
files begin with c¢group. Start by looking at cgroup.procs (using cat is fine),
which lists the processes in the cgroup. A similar file, cgroup.threads, also
includes threads.

To see the controllers currently in use for the cgroup, look at c¢group
.controllers:

$ cat cgroup.controllers
memory pids

A Closer Look at Processes and Resource Utilization 219

220

Chapter 8

Most cgroups used for shells have these two controllers, which can con-
trol the amount of memory used and the total number of processes in the
cgroup. To interact with a controller, look for the files that match the con-
troller prefix. For example, if you want to see the number of threads run-
ning in the cgroup, consult pids.current:

$ cat pids.current
4

To see the maximum amount of memory that the cgroup can consume,
take a look at memory.max:

$ cat memory.max
max

A value of max means that this cgroup has no specific limit, but because
cgroups are hierarchical, a cgroup back down the subdirectory chain might
limit it.

8.6.3 Manipulating and Creating cgroups

Although you probably won’t ever need to alter cgroups, it’s easy to do. To
put a process into a cgroup, write its PID to its cgroup.procs file as root:

echo pid > cgroup.procs

This is how many changes to cgroups work. For example, if you want to
limit the maximum number of PIDs of a cgroup (to, say, 3,000 PIDs), do it
as follows:

echo 3000 > pids.max

Creating cgroups is trickier. Technically, it’s as easy as creating a sub-
directory somewhere in the cgroup tree; when you do so, the kernel auto-
matically creates the interface files. If a cgroup has no processes, you can
remove the cgroup with rmdir even with the interface files present. What
can trip you up are the rules governing cgroups, including:

e You can put processes only in outer-level (“leaf”) cgroups. For example,
if you have cgroups named /my-cgroup and /my-cgroup/my-subgroup, you
can’t put processes in /my-cgroup, but /my-cgroup/my-subgroup is okay. (An
exception is if the cgroups have no controllers, but let’s not dig further.)

e A cgroup can’t have a controller that isn’t in its parent cgroup.

¢ You must explicitly specify controllers for child cgroups. You do this
through the cgroup.subtree_control file; for example, if you want a child
cgroup to have the cpu and pids controllers, write +cpu +pids to this file.

8.7

An exception to these rules is the root cgroup found at the bottom
of the hierarchy. You can place processes in this cgroup. One reason you
might want to do this is to detach a process from systemd’s control.

8.6.4 Viewing Resource Utilization

In addition to being able to limit resources by cgroup, you can also see the
current resource utilization of all processes across their cgroups. Even with
no controllers enabled, you can see the CPU usage of a cgroup by looking
atits cpu.stat file:

$ cat cpu.stat
usage_usec 4617481
user_usec 2170266
system_usec 2447215

Because this is the accumulated CPU usage over the entire lifespan of
the cgroup, you can see how a service consumes processor time even if it
spawns many subprocesses that eventually terminate.

You can view other types of utilization if the appropriate controllers are
enabled. For example, the memory controller gives access to the memory.current
file for current memory use and memory.stat file containing detailed mem-
ory data for the lifespan of the cgroup. These files are not available in the
root cgroup.

You can get a lot more out of cgroups. The full details for how to use
each individual controller, as well as all of the rules for creating cgroups,
are available in the kernel documentation; just search online for “cgroups2
documentation” and you should find it.

For now, though, you should have a good idea of how cgroups work.
Understanding the basics of their operation helps explain how systemd
organizes processes. Later on, when you read about containers, you’ll see
how they’re used for a much different purpose.

Further Topics

One reason there are so many tools to measure and manage resource
utilization is that different types of resources are consumed in many dif-
ferent ways. In this chapter, you've seen CPU, memory, and I/O as system
resources being consumed by processes, threads inside processes, and the
kernel.

The other reason the tools exist is that the resources are limited, and
for a system to perform well, its components must strive to consume fewer
resources. In the past, many users shared a machine, so it was necessary
to make sure that each user had a fair share of resources. Now, although
a modern desktop computer may not have multiple users, it still has many
processes competing for resources. Likewise, high-performance network
servers require intense system resource monitoring because they run many
processes to handle multiple requests simultaneously.

A Closer Look at Processes and Resource Utilization 221

Further topics in resource monitoring and performance analysis you
might want to explore include:

sar (System Activity Reporter) The sar package has many of the con-
tinuous monitoring capabilities of vmstat, but it also records resource
utilization over time. With sar, you can look back at a particular time to
see what your system was doing. This is handy when you want to analyze
a past system event.

acct (process accounting) The acct package can record the processes
and their resource utilization.

Quotas You can limit the amount of disk space that a user can use
with the quota system.

If you're interested in systems tuning and performance in particular,
Systems Performance: Enterprise and the Cloud, 2nd edition, by Brendan Gregg
(Addison-Wesley, 2020) goes into much more detail.

We also haven’t yet touched on the many, many tools you can use to
monitor network resource utilization. To use those, though, you first need
to understand how the network works. That’s where we’re headed next.

222 Chapter 8

UNDERSTANDING YOUR
NETWORK AND ITS
CONFIGURATION

Networking is the practice of connecting
computers and sending data between them.

That sounds simple enough, but to under-
stand how it works, you need to ask two funda-
mental questions:

e How does the computer sending the data know where to send its data?

e When the destination computer receives the data, how does it know
what it just received?

A computer answers these questions by using a series of components,
with each one responsible for a certain aspect of sending, receiving, and
identifying data. The components are arranged in groups that form network
layers, which stack on top of each other in order to form a complete system.
The Linux kernel handles networking in a similar way to the SCSI subsys-
tem described in Chapter 3.

Because each layer tends to be independent, it’s possible to build net-
works with many different combinations of components. This is where
network configuration can become very complicated. For this reason, we’ll

224

9.1

9.2

Chapter 9

begin this chapter by looking at the layers in very simple networks. You’ll
learn how to view your own network settings, and when you understand

the basic workings of each layer, you’ll be ready to learn how to configure
those layers by yourself. Finally, you’ll move on to more advanced topics like
building your own networks and configuring firewalls. (Skip over that mate-
rial if your eyes start to glaze over; you can always come back.)

Network Basics

Before getting into the theory of network layers, take a look at the simple
network shown in Figure 9-1.

LAN
1 Uplink

Host A Host B Host C Router

Figure 9-1: A typical local area network with a router that provides internet access

This type of network is ubiquitous; most home and small office net-
works are configured this way. Each machine connected to the network
is called a host. One of these is a router, which is a host that can move data
from one network to another. In this example, these four hosts (Hosts A, B,
C, and the router) form a local area network (LAN). The connections on
the LAN can be wired or wireless. There isn’t a strict definition of a LAN;
the machines residing on a LAN are usually physically close and share
much of the same configuration and access rights. You’ll see a specific
example soon.

The router is also connected to the internet—the cloud in the fig-
ure. This connection is called the uplink or the wide area network (WAN)
connection, because it links the much smaller LAN to a larger network.
Because the router is connected to both the LAN and the internet, all
machines on the LAN also have access to the internet through the router.
One of the goals of this chapter is to see how the router provides this access.

Your initial point of view will be from a Linux-based machine such as
Host A on the LAN in Figure 9-1.

Packets

A computer transmits data over a network in small chunks called packets,
which consist of two parts: a header and a payload. The header contains iden-
tifying information such as the source and destination host machines and

9.3

the basic protocol. The payload, on the other hand, is the actual applica-
tion data that the computer wants to send (for example, HTML or image
data).

A host can send, receive, and process packets in any order, regardless of
where they came from or where they’re going, which makes it possible for
several hosts to communicate “simultaneously.” For example, if a host needs
to transmit data to two others at once, it can alternate between the destina-
tions in outg